Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei Dec 2018

Data On Spectrum-Based Fluorescence Resonance Energy Transfer Measurement Of E. Coli Multidrug Transporter Acrb, Yuguang Cai, Thomas E. Wilkop, Yinan Wei

Chemistry Faculty Publications

This paper presented the dataset of correction parameters used in the determination of the energy transfer efficiencies from the spectrum-based fluorescence resonance energy transfer (FRET) measurement in a trimeric membrane protein AcrB. The cyan fluorescent protein (CFP) and yellow fluorescent protein (YPet) were used as the donor and acceptor, respectively. Two AcrB fusion proteins were constructed, AcrB-CFP and AcrB-YPet. The proteins were co-expressed in Escherichia coli cells, and energy transfer efficiency were determined in live cells. To obtain reliable energy transfer data, a complete set of correction parameters need to be first determined to accommodate for factors such as background ...


Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards Jul 2017

Real-Time Sensing Of Single-Ligand Delivery With Nanoaperture-Integrated Microfluidic Devices, W. Elliott Martin, Ning Ge, Bernadeta R. Srijanto, Emily Furnish, C. Patrick Collier, Christine A. Trinkle, Christopher I. Richards

Chemistry Faculty Publications

The measurement of biological events on the surface of live cells at the single-molecule level is complicated by several factors including high protein densities that are incompatible with single-molecule imaging, cellular autofluorescence, and protein mobility on the cell surface. Here, we fabricated a device composed of an array of nanoscale apertures coupled with a microfluidic delivery system to quantify single-ligand interactions with proteins on the cell surface. We cultured live cells directly on the device and isolated individual epidermal growth factor receptors (EGFRs) in the apertures while delivering fluorescently labeled epidermal growth factor. We observed single ligands binding to EGFRs ...


Dual-Functional-Tag-Facilitated Protein Labeling And Immobilization, Xinyi Zhang, Wei Lu, Kevin Kwan, Dibakar Bhattacharyya, Yinan Wei Feb 2017

Dual-Functional-Tag-Facilitated Protein Labeling And Immobilization, Xinyi Zhang, Wei Lu, Kevin Kwan, Dibakar Bhattacharyya, Yinan Wei

Chemistry Faculty Publications

An important strategy in the construction of biomimetic membranes and devices is to use natural proteins as the functional components for incorporation in a polymeric or nanocomposite matrix. Toward this goal, an important step is to immobilize proteins with high efficiency and precision without disrupting the protein function. Here, we developed a dual-functional tag containing histidine and the non-natural amino acid azidohomoalanine (AHA). AHA is metabolically incorporated into the protein, taking advantage of the Met-tRNA and Met-tRNA synthetase. Histidine in the tag can facilitate metal-affinity purification, whereas AHA can react with an alkyne-functionalized probe or surface via well-established click chemistry ...