Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry Faculty Publications

Biochemistry

Mutation

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Dual Regulatory Role Of Amino Acids Leu480 And Gln481 Of Prothrombin, Joesph R. Wiencek, Jamila Hirbawi, Vivien C. Yee, Michael Kalafatis Jan 2016

The Dual Regulatory Role Of Amino Acids Leu480 And Gln481 Of Prothrombin, Joesph R. Wiencek, Jamila Hirbawi, Vivien C. Yee, Michael Kalafatis

Chemistry Faculty Publications

Prothrombin (FII) is activated to α-thrombin (IIa) by prothrombinase. Prothrombinase is composed of a catalytic subunit, factor Xa (fXa), and a regulatory subunit, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. We constructed, expressed, and purified several mutated recombinant FII (rFII) molecules within the previously determined fVa-dependent binding site for fXa (amino acid region 473–487 of FII). rFII molecules bearing overlapping deletions within this significant region first established the minimal stretch of amino acids required for the fVa-dependent recognition exosite for fXa in prothrombinase within the amino acid sequence Ser478–Val ...


It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield Jan 2016

It Is All About (U)Biquitin: Role Of Altered Ubiquitin-Proteasome System And Uchl1 In Alzheimer Disease, Antonella Tramutola, Fabio Di Domenico, Eugenio Barone, Marzia Perluigi, D. Allan Butterfield

Chemistry Faculty Publications

Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased ...