Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Dancing Through Life: Allosteric Transitions And Structural Analysis Of Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker Dec 2014

Dancing Through Life: Allosteric Transitions And Structural Analysis Of Hsp70 And Hsp110 Chaperone Proteins, Gabrielle Stetz, Gennady M. Verkhivker

Student Scholar Symposium Abstracts and Posters

The molecular chaperone protein Hsp70 is centrally involved in cellular homeostasis by assisting in the folding and degradation of protein substrates. Hsp70 is joined by co-chaperones, such as Hsp110, which contribute to specialized tasks of the Hsp70 complex. Imbalances of this heat shock protein system are believed to be involved with the deregulation of cancer pathways and other human diseases. Better understanding of how these heat shock proteins work at the molecular level, which has been investigated using molecular docking tools, will give more clues about biological function. Simulating the formation and function of Hsp70 based chaperone complexes could provide ...


Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams May 2014

Functional Analysis Of Cytosolic Hsp70 Nucleotide Exchange Factor Networks In Yeast, Jennifer Lynn Abrams

UT GSBS Dissertations and Theses (Open Access)

The Hsp70 class of molecular chaperones play critical roles in protein homeostasis via an ATP-dependent folding cycle. Cytosolic Hsp70s in the budding yeast Saccharomyces cerevisiae, Ssa and Ssb, interact with up to three distinct nucleotide exchange factors (NEFs) homologous to human counterparts; Sse1/Sse2/HSP110, Fes1/HspBP1, and Snl1/Bag1. In an effort to understand the differential functional contributions of the cytosolic NEFs to protein homeostasis (“proteostasis”), I carried out comparative genetic, biochemical and cell biological analyses. For these studies, I developed protocols to monitor protein disaggregation and reactivation in a near real-time coupled assay that revealed the importance of ...


Mechanisms Underlying The Heterogeneous Sensitivities Of Cancer Cells To Proteasome Inhibitors, Matthew C. White May 2013

Mechanisms Underlying The Heterogeneous Sensitivities Of Cancer Cells To Proteasome Inhibitors, Matthew C. White

UT GSBS Dissertations and Theses (Open Access)

The mechanisms underlying cellular response to proteasome inhibitors have not been clearly elucidated in solid tumor models. Evidence suggests that the ability of a cell to manage the amount of proteotoxic stress following proteasome inhibition dictates survival. In this study using the FDA-approved proteasome inhibitor bortezomib (Velcade®) in solid tumor cells, we demonstrated that perhaps the most critical response to proteasome inhibition is repression of global protein synthesis by phosphorylation of the eukaryotic initiation factor 2-α subunit (eIF2α). In a panel of 10 distinct human pancreatic cancer cells, we showed marked heterogeneity in the ability of cancer cells to induce ...