Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

Gene expression

Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 41

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Decrypting Female Attractivity In Garter Snakes, Holly Rucker May 2019

Decrypting Female Attractivity In Garter Snakes, Holly Rucker

Senior Honors Projects, 2010-current

Pheromones are utilized by many species as sexual signals driving mate choice, and pheromone production in vertebrates hinges on sex hormone action. Female red-sided garter snakes (Thamnophis sirtalis parietalis) produce a skin-based sex pheromone used by males for mate detection and selection. Estradiol is necessary for pheromone production, yet the specific mechanisms within the skin are unknown. Central to this is the metabolism of testosterone to estradiol via the enzyme aromatase. It is hypothesized that female garter snakes synthesize estradiol locally in the skin and maintain pheromone production via tissue-specific regulation of aromatase. Further, I hypothesize that female attractiveness, and ...


General Decapping Activators Target Different Subsets Of Inefficiently Translated Mrnas, Feng He, Alper Celik, Chan Wu, Allan Jacobson Dec 2018

General Decapping Activators Target Different Subsets Of Inefficiently Translated Mrnas, Feng He, Alper Celik, Chan Wu, Allan Jacobson

Open Access Articles

The Dcp1-Dcp2 decapping enzyme and the decapping activators Pat1, Dhh1, and Lsm1 regulate mRNA decapping, but their mechanistic integration is unknown. We analyzed the gene expression consequences of deleting PAT1, LSM1, or DHH1, or the DCP2 C-terminal domain, and found that: i) the Dcp2 C-terminal domain is an effector of both negative and positive regulation; ii) rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly target specific subsets of yeast mRNAs and loss of the functions of each of these factors has substantial indirect consequences for genome-wide mRNA expression; and iii) transcripts targeted by Pat1, Lsm1, and ...


An Asymmetric Centromeric Nucleosome, Yuichi Ichikawa, Noriko Saitoh, Paul D. Kaufman Aug 2018

An Asymmetric Centromeric Nucleosome, Yuichi Ichikawa, Noriko Saitoh, Paul D. Kaufman

Open Access Articles

Nucleosomes contain two copies of each core histone, held together by a naturally symmetric, homodimeric histone H3-H3 interface. This symmetry has complicated efforts to determine the regulatory potential of this architecture. Through molecular design and in vivo selection, we recently generated obligately heterodimeric H3s, providing a powerful tool for discovery of the degree to which nucleosome symmetry regulates chromosomal functions in living cells (Ichikawa et al., 2017). We now have extended this tool to the centromeric H3 isoform (Cse4/CENP-A) in budding yeast. These studies indicate that a single Cse4 N- or C-terminal extension per pair of Cse4 molecules is ...


Biology Of Exosomes And Their Microrna Cargos In Human And Bovine Milk, Amy Lynn Leiferman Jun 2018

Biology Of Exosomes And Their Microrna Cargos In Human And Bovine Milk, Amy Lynn Leiferman

Public Access Theses and Dissertations from the College of Education and Human Sciences

Exosomes are small, cargo-containing vesicles secreted by cells to facilitate intercellular communication. Of exosome cargos, microRNAs are especially interesting because of their involvement in gene regulation. Recently, our lab has shown that exosomes and their microRNA cargo are absorbed through the diet and elicit effects exogenously. Human and animal milk contain exosomes, which may have implications in infant and adult nutrition. There is evidence that bovine milk exosomes enhance growth of murine C2C12 myotube cell cultures, but whether this translates to muscle in vivo is unknown. The USDA National Nutrient Database for Standard Reference is lacking up-to-date information about human ...


Investigation Of Bradyzoite Differentiation Initiation In Toxoplasma Gondii, Harim I. Won, Paul H. Davis Ph.D. May 2018

Investigation Of Bradyzoite Differentiation Initiation In Toxoplasma Gondii, Harim I. Won, Paul H. Davis Ph.D.

Theses/Capstones/Creative Projects

Like other eukaryotic organisms, Toxoplasma gondii promoters feature both constitutive and life-stage regulated cis-elements. Using a transcriptomic microarray approach, a cluster of transcripts upregulated early during bradyzoite differentiation was identified. Computational analysis of the promoter regions of these “up-early” transcripts identified a shared upstream consensus motif, a putative transcription factor binding site. Using a dual luciferase assay adapted for recombinational cloning and reporter gene quantification by qPCR, we demonstrate developmental stage-specific expression of the luciferase reporter gene inserted downstream of the transcription factor binding site. The shared consensus motif was found to be an autonomous cis-element by conversion ...


A Single Mechanism Of Biogenesis, Initiated And Directed By Piwi Proteins, Explains Pirna Production In Most Animals, Phillip D. Zamore, Ildar Gainetdinov, Cansu Colpan, Katharine Cecchini Apr 2018

A Single Mechanism Of Biogenesis, Initiated And Directed By Piwi Proteins, Explains Pirna Production In Most Animals, Phillip D. Zamore, Ildar Gainetdinov, Cansu Colpan, Katharine Cecchini

University of Massachusetts Medical School Faculty Publications

In animals, piRNAs guide PIWI-proteins to silence transposons and regulate gene expression. The mechanisms for making piRNAs have been proposed to differ among cell types, tissues, and animals. Our data instead suggest a single model that explains piRNA production in most animals. piRNAs initiate piRNA production by guiding PIWI proteins to slice precursor transcripts. Next, PIWI proteins direct the stepwise fragmentation of the sliced precursor transcripts, yielding tail-to-head strings of phased pre-piRNAs. Our analyses detect evidence for this piRNA biogenesis strategy across an evolutionarily broad range of animals including humans. Thus, PIWI proteins initiate and sustain piRNA biogenesis by the ...


The Trim-Nhl Protein Nhl-2 Is A Novel Co-Factor Of The Csr-1 And Hrde-1 22g-Rna Pathways, Peter R. Boag, Gregory M. Davis, Shikui Tu, Rhys N. Colson, Joshua W. T. Anderson, Menachem J. Gunzburg, Michelle A. Francisco, Debashish Ray, Tuhin Maity, Monica Z. Wu, Quaid D. Morris, Timothy R. Hughes, Jacqueline A. Wilce, University Of Toronto, Zhiping Weng Feb 2018

The Trim-Nhl Protein Nhl-2 Is A Novel Co-Factor Of The Csr-1 And Hrde-1 22g-Rna Pathways, Peter R. Boag, Gregory M. Davis, Shikui Tu, Rhys N. Colson, Joshua W. T. Anderson, Menachem J. Gunzburg, Michelle A. Francisco, Debashish Ray, Tuhin Maity, Monica Z. Wu, Quaid D. Morris, Timothy R. Hughes, Jacqueline A. Wilce, University Of Toronto, Zhiping Weng

University of Massachusetts Medical School Faculty Publications

Proper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the C. elegans germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the C. elegans germline, modulating germline chromatin and meiotic chromosome organization. We uncover a role for NHL-2 as a co-factor in both positively (CSR-1) and negatively (HRDE-1) acting germline 22G-small RNA pathways and the somatic nuclear RNAi pathway. Furthermore, we demonstrate that NHL-2 ...


Fundamental Limits On Dynamic Inference From Single Cell Snapshots, Caleb Weinreb, Samuel Wolock, Betsabeh K. Tusi, Merav Socolovsky, Allon M. Klein Aug 2017

Fundamental Limits On Dynamic Inference From Single Cell Snapshots, Caleb Weinreb, Samuel Wolock, Betsabeh K. Tusi, Merav Socolovsky, Allon M. Klein

University of Massachusetts Medical School Faculty Publications

Single cell expression profiling reveals the molecular states of individual cells with unprecedented detail. However, because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. But some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by ...


Microarray Analysis Of Aging-Associated Immune System Alterations In The Rostral Ventrolateral Medulla Of F344 Rats, Sivasai Balivada, Chanran K. Ganta, Yongqing Zhang, Hitesh N. Pawar, Richard J. Ortiz, Kevin G. Becker, Arshad M. Khan, Michael J. Kenney Jun 2017

Microarray Analysis Of Aging-Associated Immune System Alterations In The Rostral Ventrolateral Medulla Of F344 Rats, Sivasai Balivada, Chanran K. Ganta, Yongqing Zhang, Hitesh N. Pawar, Richard J. Ortiz, Kevin G. Becker, Arshad M. Khan, Michael J. Kenney

Arshad M. Khan, Ph.D.

The rostral ventrolateral medulla (RVLM) is an area of the brain stem that contains diverse neural substrates that are involved in systems critical for physiological function. There is evidence that aging affects some neural substrates within the RVLM, although age-related changes in RVLM molecular mechanisms are not well established. The goal of the present study was to characterize the transcriptomic profile of the aging RVLM and to test the hypothesis that aging is associated with altered gene expression in the RVLM, with an emphasis on immune system associated gene transcripts. RVLM tissue punches from young, middle-aged, and aged F344 rats ...


Mitochondrial Retrograde Signaling Connects Respiratory Capacity To Thermogenic Gene Expression, Minwoo Nam, Thomas E. Akie, Masato Sanosaka, Siobhan M. Craige, Shashi Kant, John F. Keaney Jr., Marcus P. Cooper May 2017

Mitochondrial Retrograde Signaling Connects Respiratory Capacity To Thermogenic Gene Expression, Minwoo Nam, Thomas E. Akie, Masato Sanosaka, Siobhan M. Craige, Shashi Kant, John F. Keaney Jr., Marcus P. Cooper

UMass Metabolic Network Publications

Mitochondrial respiration plays a crucial role in determining the metabolic state of brown adipose tissue (BAT), due to its direct roles in thermogenesis, as well as through additional mechanisms. Here, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to genetic and metabolic reprogramming of BAT. In mouse BAT, ablation of LRPPRC (LRP130), a potent regulator of mitochondrial transcription and respiratory capacity, triggers down-regulation of thermogenic genes, promoting a storage phenotype in BAT. This retrograde regulation functions by inhibiting the recruitment of PPARgamma to the regulatory elements of thermogenic genes. Reducing cytosolic Ca2+ reverses the attenuation of thermogenic ...


Divergent Responses Of Larval And Juvenile Blue Mussels To Low Salinity Exposure, Melissa A. May May 2017

Divergent Responses Of Larval And Juvenile Blue Mussels To Low Salinity Exposure, Melissa A. May

Electronic Theses and Dissertations

In this study, we compared the osmotic stress response of larval and juvenile blue mussels (Mytilus edulis) at the transcriptomic, metabolomic, and whole organism levels. Blue mussels inhabit coastal areas, where they face climate-induced reductions in nearshore salinity. Despite their ecological and economic importance, scientists do not fully understand the underlying transcriptomic and cellular mechanisms of the osmotic stress response in blue mussels or how the ability to respond to stress changes throughout development. Blue mussels spend the first weeks of life developing through several larval stages in the plankton. These early life history stages are more vulnerable to environmental ...


Hyper- And Hypo- Nutrition Studies Of The Hepatic Transcriptome And Epigenome Suggest That Pparα Regulates Anaerobic Glycolysis, Anthony R. Soltis, Shmulik Motola, Santiago Vernia, Christopher W. Ng, Norman J. Kennedy, Simona Dalin, Bryan J. Matthews, Roger J. Davis, Ernest Fraenkel Mar 2017

Hyper- And Hypo- Nutrition Studies Of The Hepatic Transcriptome And Epigenome Suggest That Pparα Regulates Anaerobic Glycolysis, Anthony R. Soltis, Shmulik Motola, Santiago Vernia, Christopher W. Ng, Norman J. Kennedy, Simona Dalin, Bryan J. Matthews, Roger J. Davis, Ernest Fraenkel

Davis Lab Publications

Diet plays a crucial role in shaping human health and disease. Diets promoting obesity and insulin resistance can lead to severe metabolic diseases, while calorie-restricted (CR) diets can improve health and extend lifespan. In this work, we fed mice either a chow diet (CD), a 16 week high-fat diet (HFD), or a CR diet to compare and contrast the effects of these diets on mouse liver biology. We collected transcriptomic and epigenomic datasets from these mice using RNA-Seq and DNase-Seq. We found that both CR and HFD induce extensive transcriptional changes, in some cases altering the same genes in the ...


The 4d Nucleome Project, Job Dekker, Andrew S. Belmont, Mitchell Guttman, Victor O. Leshyk, John T. Lis, Stavros Lomvardas, Leonid A. Mirny, Clodagh C. O'Shea, Peter J. Park, Bing Ren, Joan C. Ritland Politz, Jay Shendure, Sheng Zong Jan 2017

The 4d Nucleome Project, Job Dekker, Andrew S. Belmont, Mitchell Guttman, Victor O. Leshyk, John T. Lis, Stavros Lomvardas, Leonid A. Mirny, Clodagh C. O'Shea, Peter J. Park, Bing Ren, Joan C. Ritland Politz, Jay Shendure, Sheng Zong

University of Massachusetts Medical School Faculty Publications

The spatial organization of the genome and its dynamics contribute to gene expression and cellular function in normal development as well as in disease. Although we are increasingly well equipped to determine a genome's sequence and linear chromatin composition, studying the three-dimensional organization of the genome with high spatial and temporal resolution remains challenging. The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the long term goal of gaining deeper mechanistic understanding of how the nucleus is organized. The project will ...


Biological Sex Differences In The Gene Expression And Contractile Function Of Cardiac Myocytes, Christa Lynn Trexler Jan 2017

Biological Sex Differences In The Gene Expression And Contractile Function Of Cardiac Myocytes, Christa Lynn Trexler

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

Significant sexual dimorphisms have been demonstrated in the development, presentation and outcome of cardiovascular disease (CVD) in humans as well as in animal models. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Additionally, even though CVD is the number one killer of women in the U.S., women have traditionally been omitted from clinical trials and female animals have commonly been excluded from basic research studies. This research bias has led to the development of cardiovascular therapeutics that ...


Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey Jan 2017

Biochemical And Histological Differences Between Costal And Articular Cartilages, Michael W. Stacey

Bioelectrics Publications

Biologically, costal cartilage is an understudied tissue type and much is yet to be learned regarding underlying mechanisms related to form and function, and how these relate to disease states, specifically chest wall deformity. Chest wall deformities have a component of inheritance, implying underlying genetic causes; however the complexity of inheritance suggests multiple genetic components. At our Centre investigations were performed on gene expression of key select genes from costal cartilage removed at surgery of patients with chest wall deformity to show high expression of decorin, a key player in collagen fiber formation and growth. Also, the degree of tissue ...


Spatial Crowding And Confinement Effects On Bursty Gene Expression, Charles Wei-Shing Chin Dec 2016

Spatial Crowding And Confinement Effects On Bursty Gene Expression, Charles Wei-Shing Chin

Doctoral Dissertations

Synthetic biology and genetic engineering are valuable tools in the development of new, sustainable energy generation technologies. The characterization of stochastic gene expression is vital to the efficient application of genetic engineering techniques. Transcriptional bursting, in which periods of high expression are punctuated by periods of no expression, is extensively observed in gene expression. While various molecular mechanisms have been hypothesized to be responsible for transcriptional bursting, spatial considerations have largely been neglected. This work uses computational modeling to examine in detail the influence of spatial factors such as macromolecular crowding and confinement on gene expression.

In the first part ...


Gene Expression And Physiological Analysis To Study Differences Between Oryza Sativa Cultivars Susceptible And Resistant To Chalky Grain Formation Subjected To High Nighttime Temperatures., Nicholas Lawson May 2016

Gene Expression And Physiological Analysis To Study Differences Between Oryza Sativa Cultivars Susceptible And Resistant To Chalky Grain Formation Subjected To High Nighttime Temperatures., Nicholas Lawson

Theses and Dissertations

Starch composition and grain quality of rice is greatly influenced by genotype and environmental factors. The detrimental effects of high nighttime temperatures on rice yield and quality has recently become apparent, with some of the warmest average nighttime temperatures being recorded in the past few years. One of the most notable effects of this stress, an increase in grain chalk formation, correlates with a decrease in quality. This effect varies greatly between cultivars as some show less temperature-sensitive quality reduction than others. The goal of this research is to elucidate fundamental changes that occur in developing plants and grains as ...


Epigenetic Regulation Of Gene Expression During Spermatogenesis, Karishma Nayak May 2016

Epigenetic Regulation Of Gene Expression During Spermatogenesis, Karishma Nayak

Senior Honors Projects

In the US livestock production industry, improving reproductive efficiency will improve animal welfare and maintain reasonable costs of meat and milk for consumers. In recent research, abnormalities in epigenetic markers in sperm during spermatogenesis, has been linked to male subfertility in many species. Epigenetics is the study of changes in organisms caused by modifications of gene expression, including DNA methylation, rather than alteration of the genetic code itself. When this process is disturbed, it can negatively impact semen therefore decreasing its fertility. Through further research on how DNA methylation influences gene expression during spermatogenesis and its impact on sperm quality ...


No Current Evidence For Widespread Dosage Compensation In S. Cerevisiae, Eduardo M. Torres, Michael Springer, Angelika Amon Mar 2016

No Current Evidence For Widespread Dosage Compensation In S. Cerevisiae, Eduardo M. Torres, Michael Springer, Angelika Amon

UMass Metabolic Network Publications

Previous studies of laboratory strains of budding yeast had shown that when gene copy number is altered experimentally, RNA levels generally scale accordingly. This is true when the copy number of individual genes or entire chromosomes is altered. In a recent study, Hose et al. (2015) reported that this tight correlation between gene copy number and RNA levels is not observed in recently isolated wild Saccharomyces cerevisiae variants. To understand the origins of this proposed difference in gene expression regulation between natural variants and laboratory strains of S. cerevisiae, we evaluated the karyotype and gene expression studies performed by Hose ...


The Role Of Microrna In Cardioprotection: Ischemic Preconditioning And Mesenchymal Stem Cell Paracrine Effects, Kristin Luther Jan 2016

The Role Of Microrna In Cardioprotection: Ischemic Preconditioning And Mesenchymal Stem Cell Paracrine Effects, Kristin Luther

Dissertations

Changes in gene expression and protein levels are an important aspect of cardioprotection in which short non-coding RNA known as miRNA may play a key regulatory role. We investigated the functions of several miRNAs in the context of two cardioprotective stimuli, ischemic preconditioning (IPC) and mesenchymal stem cell (MSC) paracrine effects. We hypothesized that downregulation of a set of miRNAs (miR-148a/b, miR-30b, and let-7a*) augments expression of protective heat shock proteins during IPC, and that MSC exosomes transfer miR-21 to cardiomyocytes, resulting in downregulation of pro-apoptotic genes and reduction of infarct size.

IPC increased the level of Hsp70, Hsp90 ...


Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan Jan 2015

Analyzing The Interactions Of Kdm5/Lid And Sin3 In Drosophila Melanogaster, Ambikai Gajan

Wayne State University Dissertations

SIN3, the scaffold protein of a histone modifying complex is conserved from yeast to mammals. Drosophila SIN3 associates with both a histone deactylase RPD3 and a histone demethylase dKDM5/LID. Immunopurification of dKDM5/LID verifies a previously observed interaction with SIN3 and RPD3. Furthermore, deficiency of dKDM5/LID phenocopies deficiency of SIN3 in many cellular and developmental processes. Knockdown of both Sin3A and lid hinder cell proliferation in Drosophila cultured cells and developing flies. Knockdown of these genes also results in a curved wing phenotype implicating a role in wing development. Analysis of underlying gene expression changes upon decreased expression ...


Identification Of Novel Microrna Targets And Tumor Suppressive Functions Of Mir-203 In Murine Skin, Kent Augustus Riemondy Jr. Jan 2015

Identification Of Novel Microrna Targets And Tumor Suppressive Functions Of Mir-203 In Murine Skin, Kent Augustus Riemondy Jr.

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

miRNAs are small non-coding RNAs, approximately 22 nucleotide in length, that mediate post-transcriptional repression of target mRNAs. Since their discovery in mammals in the early 2000s, miRNAs have been intensely studied and determined to be an important mechanism to regulate gene expression in diverse biological processes. In human cancers, miRNAs are known to act as tumor suppressors or oncogenes and are being actively explored as a possible mechanism for therapeutic intervention. In the mouse, multistage skin carcinogenesis is a well-established model for studying tumor development however the functions of miRNAs in this model are poorly understood.

The Ras oncogene was ...


Molecular Mechanisms Underlying The Contralateral Repeated Bout Effect (Crbe) In Human Skeletal Muscle, Ling Xin Jan 2015

Molecular Mechanisms Underlying The Contralateral Repeated Bout Effect (Crbe) In Human Skeletal Muscle, Ling Xin

Doctoral Dissertations

Eccentric (muscle lengthening) exercise induces temporary muscle damage that can lead to long-term muscle adaptation, a process known as the repeated bout effect where subsequent exercise results in less damage. The existence of a contralateral repeated bout effect (CRBE) has been controversial. The primary goals of this study were to: 1) validate the existence of the CRBE; and 2) define the underlying molecular mechanisms.

Thirty-six young men performed 100 maximal eccentric actions of the knee extensors using one leg (bout 1) and repeated the exercise with the contralateral leg five weeks later (bout 2). Vastus lateralis muscle biopsies were ...


Targeted Germ Line Disruptions Reveal General And Species-Specific Roles For Paralog Group 1 Hox Genes In Zebrafish, Steven E. Weicksel, Ankit Gupta, Denise A. Zannino, Scot A. Wolfe, Charles G. Sagerstrom Jun 2014

Targeted Germ Line Disruptions Reveal General And Species-Specific Roles For Paralog Group 1 Hox Genes In Zebrafish, Steven E. Weicksel, Ankit Gupta, Denise A. Zannino, Scot A. Wolfe, Charles G. Sagerstrom

Program in Gene Function and Expression Publications and Presentations

BACKGROUND: The developing vertebrate hindbrain is transiently segmented into rhombomeres by a process requiring Hox activity. Hox genes control specification of rhombomere fates, as well as the stereotypic differentiation of rhombomere-specific neuronal populations. Accordingly, germ line disruption of the paralog group 1 (PG1) Hox genes Hoxa1 and Hoxb1 causes defects in hindbrain segmentation and neuron formation in mice. However, antisense-mediated interference with zebrafish hoxb1a and hoxb1b (analogous to murine Hoxb1 and Hoxa1, respectively) produces phenotypes that are qualitatively and quantitatively distinct from those observed in the mouse. This suggests that PG1 Hox genes may have species-specific functions, or that anti-sense ...


Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke Mar 2014

Transcriptional Control Of Toxoplasma Development, Joshua Byran Radke

Graduate Theses and Dissertations

Toxoplasma gondii is an obligate intracellular protozoan parasite of animals and man. The asexual life cycle of Toxoplasma involves three very distinct, but tightly coordinated developmental stages. In nature, the sporozoite (contained within an oocyst) and bradyzoite (contained within a tissue cyst) initiate infection of the intermediate host, followed by rapid differentiation into the actively replicating tachyzoite. When countered by an effective host response, the tachyzoite differentiates back into the latent bradyzoite and this unique ability of Toxoplasma to interconvert between the replicating tachyzoite and the latent bradyzoite within a single host is the cause of life long infection. The ...


Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi Jan 2014

Lineage-Specific Transcriptional Profiles Of Symbiodinium Spp. Unaltered By Heat Stress In A Coral Host, Daniel J. Barshis, Jason T. Ladner, Thomas A. Oliver, Stephen R. Palumbi

Biological Sciences Faculty Publications

Dinoflagellates of the genus Symbiodinium form an endosymbiosis with reef building corals, in which photosynthetically derived nutrients comprise the majority of the coral energy budget. An extraordinary amount of functional and genetic diversity is contained within the coral-associated Symbiodinium, with some phylotypes (i.e., genotypic groupings), conferring enhanced stress tolerance to host corals. Recent advances in DNA sequencing technologies have enabled transcriptome-wide profiling of the stress response of the cnidarian coral host; however, a comprehensive understanding of the molecular response to stress of coral-associated Symbiodinium, as well as differences among physiologically susceptible and tolerant types, remains largely unexplored. Here, we ...


Gene Expression Studies For The Analysis Of Domoic Acid Production In The Marine Diatom Pseudo-Nitzschia Multiseries, Katie Boissonneault, Brooks M. Henningsen, Stephen S. Bates, Deborah L. Robertson, Sean Milton, Jerry Pelletier, Deborah A. Hogan, David E. Housman Nov 2013

Gene Expression Studies For The Analysis Of Domoic Acid Production In The Marine Diatom Pseudo-Nitzschia Multiseries, Katie Boissonneault, Brooks M. Henningsen, Stephen S. Bates, Deborah L. Robertson, Sean Milton, Jerry Pelletier, Deborah A. Hogan, David E. Housman

Open Dartmouth: Faculty Open Access Scholarship

Pseudo-nitzschia multiseries Hasle (Hasle) (Ps-n) is distinctive among the ecologically important marine diatoms because it produces the neurotoxin domoic acid. Although the biology of Ps-n has been investigated intensely, the characterization of the genes and biochemical pathways leading to domoic acid biosynthesis has been limited. To identify transcripts whose levels correlate with domoic acid production, we analyzed Ps-n under conditions of high and low domoic acid production by cDNA microarray technology and reverse-transcription quantitative PCR (RT-qPCR) methods. Our goals included identifying and validating robust reference genes for Ps-n RNA expression analysis under these conditions.


Regulation Of C. Elegans Developmental Timing By The Gata Transcription Factor Elt-1, Max Louis Cohen Jan 2013

Regulation Of C. Elegans Developmental Timing By The Gata Transcription Factor Elt-1, Max Louis Cohen

Molecular, Cellular, and Developmental Biology Graduate Theses & Dissertations

The heterochronic gene network controls developmental timing in the nematode roundworm Caenorhabditis elegans. Bi-stable switch-like changes in gene expression occur during its development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, allowing for developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor lin-28; the nuclear hormone receptor daf-12; and the microRNAs lin-4, mir-48, mir-84, mir-241, and let-7. daf-12 is the only factor currently known to regulate transcription of the Let-7 microRNA family, but its contribution is insufficient to account for all of the transcriptional regulation observed. In this work ...


Delineating Key Genetic Components On Linear Plasmid 36 That Contribute To Its Essential Role In Borrelia Burgdorferi Mammalian Infectivity., Tisha Choudhury Jan 2013

Delineating Key Genetic Components On Linear Plasmid 36 That Contribute To Its Essential Role In Borrelia Burgdorferi Mammalian Infectivity., Tisha Choudhury

Electronic Theses and Dissertations

The spirochete Borrelia burgdorferi is the etiologic agent of Lyme disease. This pathogen has a complex enzootic life cycle that involves passage between the tick vector (Ixodes scapularis) and various vertebrate hosts with humans being inadvertent hosts. There is a pressing need to study the genetic aspects of the B. burgdorferi infectious cycle and particularly spirochete genes involved in mammalian infectivity so as to develop novel therapeutic and diagnostic strategies to combat Lyme disease. The B. burgdorferi genome is fragmented and comprised of a single 900 kb linear chromosome and multiple linear and circular plasmids. It has been observed that ...


Live-Cell Monitoring Of Periodic Gene Expression In Synchronous Human Cells Identifies Forkhead Genes Involved In Cell Cycle Control, Gavin D. Grant, Joshua Gamsby, Viktor Martyanov, Lionel Brooks, Lacy K. George, J. Matthew Mahoney, Jennifer J. Loros, Jay C. Dunlap, Michael L. Whitfield Jun 2012

Live-Cell Monitoring Of Periodic Gene Expression In Synchronous Human Cells Identifies Forkhead Genes Involved In Cell Cycle Control, Gavin D. Grant, Joshua Gamsby, Viktor Martyanov, Lionel Brooks, Lacy K. George, J. Matthew Mahoney, Jennifer J. Loros, Jay C. Dunlap, Michael L. Whitfield

Open Dartmouth: Faculty Open Access Scholarship

We developed a system to monitor periodic luciferase activity from cell cycle-regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle-regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel ...