Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Functional Evaluation Of Bacteriophage T4 Rad50 Signature Motif Residues, Timothy J. Herdendorf, Scott W. Nelson Jun 2011

Functional Evaluation Of Bacteriophage T4 Rad50 Signature Motif Residues, Timothy J. Herdendorf, Scott W. Nelson

Biochemistry, Biophysics and Molecular Biology Publications

The repair of DNA double-strand breaks (DSBs) is essential to maintaining the integrity of the genome, and organisms have evolved a conserved mechanism to facilitate their repair. In eukaryotes, archaea, and some bacteriophage, a complex made up of Mre11 and Rad50 (MR complex), which are a nuclease and ATPase, respectively, is involved in the initial processing of DSBs. Rad50 is a member of the ATP Binding Cassette (ABC) protein superfamily, the members of which contain an important Signature motif that acts in trans to complete the dimeric ATP binding site. To explore the functional relevance of this motif, four of ...


Quorum Sensing In Archaea, Charles Mackin May 2011

Quorum Sensing In Archaea, Charles Mackin

Honors Scholar Theses

Bacteria coordinate cell density dependent behaviors by communicating through chemical intermediaries in a process called quorum sensing. In a bacterial culture, individual cells will constitutively produce signal molecules, termed autoinducers, and export them into the environment. When the concentration of autoinducers reaches a threshold, the cells sense that they are in a specific situation, which requires the upregulation of certain genes. This upregulation causes the bacteria to produce proteins that allow them to take part in a coordinated population-wide behavior.

In bacteria that are naturally competent, or capable of importing DNA from the environment, the expression of competence genes is ...