Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

Series

Chemical and Biological Engineering Publications

Molecular orbitals

Articles 1 - 1 of 1

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Ab Initio Study Of Molecular Interactions In Cellulose Iα, Ajitha Devarajan, Sergiy Markutsya, Monica H. Lamm, Xiaolin Cheng, Jeremy C. Smith, John Ysrael Baluyut, Yana Kholod, Mark S. Gordon, Theresa Lynn Windus Jan 2013

Ab Initio Study Of Molecular Interactions In Cellulose Iα, Ajitha Devarajan, Sergiy Markutsya, Monica H. Lamm, Xiaolin Cheng, Jeremy C. Smith, John Ysrael Baluyut, Yana Kholod, Mark S. Gordon, Theresa Lynn Windus

Chemical and Biological Engineering Publications

Biomass recalcitrance, the resistance of cellulosic biomass to degradation, is due in part to the stability of the hydrogen bond network and stacking forces between the polysaccharide chains in cellulose microfibers. The fragment molecular orbital (FMO) method at the correlated Møller-Plesset second order perturbation level of theory was used on a model of the crystalline cellulose Iα core with a total of 144 glucose units. These computations show that the intersheet chain interactions are stronger than the intrasheet chain interactions for the crystalline structure, while they are more similar to each other for a relaxed structure. An FMO chain ...