Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

Series

University of Connecticut

Cancer

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera Apr 2016

Characterization And Target Identification Of Ak301: A Novel Mitotic Arrest Agent, Michael J. Bond, Avijeet S. Chopra, Marina Bleiler, Michelle Yeagley, Eric Scocchera

University Scholar Projects

The Giardina Laboratory has recently identified AK301 as a novel mitotic arrest agent. This work aimed to characterize the arrest state induced by AK301 (EC50 ~ 150nM) and identify the cellar targets responsible for the arrest. It was found that AK301 arrest is readily reversible upon withdrawal of AK301. Cells that slip from mitosis after removal of AK301 are sensitized to apoptosis. This was found to be unique for AK301 when compared to other mitotic arrest agents like colchicine, vincristine, and BI2536. Arrested cells were found to have increased ATM activity as well as an upregulation of p53 and several ...


Mutagenesis Of 8-Oxoguanine Adjacent To An Abasic Site In Escherichia Coli Cells Proficient Or Deficient In Dna Polymerase Iv, Savas T. Tsikis May 2014

Mutagenesis Of 8-Oxoguanine Adjacent To An Abasic Site In Escherichia Coli Cells Proficient Or Deficient In Dna Polymerase Iv, Savas T. Tsikis

Honors Scholar Theses

It is well established that clustered DNA damages or multiply damaged sites (MDS) are the result of ionizing radiation and that they are characterized by an enhanced mutagenic potential. As a model MDS, we have evaluated the mutagenic and cytotoxic properties of the ubiquitous oxidative DNA damage 8-oxoguanine (G8-oxo) adjacent to the abasic site lesion (Z) using a single stranded M13mp7L2 vector. The recombinant DNA was used to transform wild type E. coli strains and strains deficient in the translesion DNA polymerase of the Y-family, DNA polymerase IV, in the presence or absence of SOS induction. The percent survival ...