Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

The Texas Medical Center Library

Glycolysis

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Cll Metabolism Is Regulated By Prognostic Factors, Modulated By Stroma And Abrogated By Pi3k Inhibition, Hima Vangapandu May 2016

Cll Metabolism Is Regulated By Prognostic Factors, Modulated By Stroma And Abrogated By Pi3k Inhibition, Hima Vangapandu

UT GSBS Dissertations and Theses (Open Access)

Metabolism of chronic lymphocytic leukemia (CLL), a disease characterized by the relentless accumulation of mature B cells has been little explored. Bone marrow stromal cells provide a survival benefit to CLL cells, in part through PI3K/AKT pathway. Compared with proliferative B-cell lines, metabolic fluxes of oxygen and lactate were low in quiescent malignant B lymphocytes from CLL patients. Glycolysis (extracellular acidification rate, ECAR) was consistently low in CLL samples, but oxygen consumption (OCR) varied considerably. Higher OCR was associated with poor prognostic factors such as ZAP 70 positivity, unmutated IgVH, high β2M levels, and higher Rai stage. Co-culture with ...


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

UT GSBS Dissertations and Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates ...