Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Molecular Biology

The Texas Medical Center Library

Cancer

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

UT GSBS Dissertations and Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is ...


Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez Aug 2016

Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez

UT GSBS Dissertations and Theses (Open Access)

Cancer is one of the leading causes of death and disease in the world. Considerable resources are spent to study and understand cancer, with the hope of developing new treatments and eventually cures that will help millions of people. Efforts to understand cancer are hindered by its inherent complexity and instability. Nonetheless, understanding the basics of tumor development and progression are the key to focused on studying the role of ΔNp63 in cancer, a p53 family member known to be involved in epithelial development, microRNA biogenesis, and stem cell maintenance. Using the strength of in vivo mouse models, we found ...


Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee Dec 2014

Novel Posttranslational Modification In Lkb1 Activation And Function, Szu-Wei Lee

UT GSBS Dissertations and Theses (Open Access)

Cancer cells display dramatic alterations in cellular metabolism to meet their needs of increased growth and proliferation. In the last decade, cancer research has brought these pathways into focus, and one emerging issue that has come to attention is that many oncogenes and tumor-suppressors are intimately linked to metabolic regulation (Jones and Thompson, 2009). One of the key tumor-suppressors involved in metabolism is Liver Kinase B1 (LKB1). LKB1 is the major upstream kinase of the evolutionarily conserved metabolic sensor—AMP-activated protein kinase (AMPK). Activation of the LKB1/AMPK pathway provides a survival advantage for cells under energy stress. LKB1 forms ...


A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan Dec 2012

A Study On The Function Of 14-3-3sigma In Regulating Cancer Energy Metabolism, Liem M. Phan, Liem M. Phan

UT GSBS Dissertations and Theses (Open Access)

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates ...


Developmental Deregulation And Tumorigenesis Inhibition In 14-3-3zeta Knockout Mouse, Jun Yang Aug 2011

Developmental Deregulation And Tumorigenesis Inhibition In 14-3-3zeta Knockout Mouse, Jun Yang

UT GSBS Dissertations and Theses (Open Access)

Cancer is second leading cause of death in the United States. Improving cancer care through patient care, research, education and prevention not only saves lives, but reduces health care cost as well. Breast cancer is the most leading cause of cancer incidence and cancer related death in women of the United States. 14-3-3s are a family of conserved proteins ubiquitously expressed in all eukaryotic organisms. They form complexes with hundreds of proteins by binding to specific phospho-serine/threonine containing motifs. In this way they regulate a variety of cellular processes and are involved in many human diseases especially cancer to ...