Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 98

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali Aug 2019

Ipsc Based Gene Correction And Disease Model Of A New Class Of Lgmd Due To Poglut1 Mutation, Jose Ortiz-Vitali

UT GSBS Dissertations and Theses (Open Access)

Recently, a novel class of muscular dystrophy has been discovered in a family due to autosomal recessive missense mutation in POGLUT1. Mutation of this enzyme leads to decreased O-glucosyltransferase activity and impaired Notch signaling, the pathways important for skeletal muscle stem cell (satellite cells) quiescence and activation. We hypothesize that reduced POGLUT1 activity and impaired Notch signaling is causative of this limb girdle muscular dystrophy through dysfunction of muscle stem cells and myogenic progenitors.

To test this, we have used iPSCs for disease modeling and rescue experiments. Using a CRISPR based gene targeting method, we aimed to correct the point ...


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

UT GSBS Dissertations and Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific stress ...


Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue Dec 2018

Role Of P300 Zz Domain In Chromatin Association And Histone Acetylation, Yongming Xue

UT GSBS Dissertations and Theses (Open Access)

Transcription is strictly regulated by numerous factors including transcription coactivators. The p300 protein and its close paralogue CREB-binding protein (CREBBP, aka CBP) are well-known transcriptional coactivators that have intrinsic lysine acetyltransferase activity. The functions of p300/CBP largely rely on their capabilities to bind to chromatin and to acetylate the histone substrates. However, the molecular mechanisms underlying the regulation of these processes are not fully understood.

Through combination of various biochemical, biophysical and molecular approaches, we show that the ZZ-type zinc finger (ZZ) domain of p300 functions as a histone reader that specifically binds the N-terminal tail of histone H3 ...


Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri Jul 2018

Characterizing The Recognition Motif And Novel Substrates Of Carm1, Sitaram Gayatri

UT GSBS Dissertations and Theses (Open Access)

A limited pool of proteins attains vast functional repertoire due to posttranslational modifications (PTMs). Arginine methylation is a common posttranslational modification, which is catalyzed by a family of nine protein arginine methyltransferases or PRMTs. These enzymes deposit one or two methyl groups to the nitrogen atoms of arginine side-chains. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the ...


Deciphering The Roles Of Δnp63 In Regulating Epithelial To Mesenchymal Transition, Cancer Progression And Metastasis, Ngoc Bui May 2018

Deciphering The Roles Of Δnp63 In Regulating Epithelial To Mesenchymal Transition, Cancer Progression And Metastasis, Ngoc Bui

UT GSBS Dissertations and Theses (Open Access)

p63 is a member of the p53 family, a well-known tumor suppressor which is considered the guardian of the genome. The TP63 gene encodes multiple isoforms that can be categorized into two main isoforms, TAp63 and ΔNp63, which are expressed in different cellular compartments and have distinct functions in many biological processes. While the Flores laboratory identified TAp63 as a tumor and metastasis suppressor, the precise roles of ΔNp63 isoforms in tumorigenesis and metastasis remain elusive. ΔNp63 is the predominant p63 isoform expressed in the epidermis and plays essential roles in regulating epidermal development and homeostasis. Utilizing a ΔNp63-conditional ...


Biological Clocks, Inflammation, And Multiorgan Damage In Sickle Cell Disease, Morayo Adebiyi May 2018

Biological Clocks, Inflammation, And Multiorgan Damage In Sickle Cell Disease, Morayo Adebiyi

UT GSBS Dissertations and Theses (Open Access)

Sickle cell disease (SCD) is a dangerous condition caused by a genetic mutation on the human beta-globin gene that contributes to erythrocyte sickling, the hallmark of the disease. Previous metabolomics studies have confirmed that elevated sphingosine kinase 1 (SphK1) mediates sphingosine-1-phosphate (S1P) production to promote erythrocyte sickling. S1P signals via five S1P receptors (S1PR) regulates several pathophysiological functions.

In the first chapter of this dissertation, I explored the role of S1PRs in SCD by utilizing pharmacologic and genetic tools. To determine the role of S1P-S1PRs signaling in SCD, I treated humanized Berkeley sickle mice (Berkeley HBS mice), with FTY720, a ...


Evolution Via Gene Duplication And Alternative Splicing In The Eukaryotic Ski7 And Hbs1 Genes, Alexandra Marshall May 2018

Evolution Via Gene Duplication And Alternative Splicing In The Eukaryotic Ski7 And Hbs1 Genes, Alexandra Marshall

UT GSBS Dissertations and Theses (Open Access)

Gene duplication and alternative splicing are both recognized as important drivers of proteomic diversity and innovation during evolution, but the evolutionary changes over long periods of time or the interrelations of the two processes has not been extensively studied. Here I study these phenomena for the SKI7 and HBS1 gene pair. These Saccharomyces cerevisiae genes were created as part of a whole genome duplication (WGD) event and have since functionally diverged. Although both genes function in mRNA surveillance pathways, the two genes act on different RNAs and have different effects on the target mRNAs. Ski7 brings the Ski complex and ...


The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland May 2018

The Regulation Of Dna Methylation In Mammalian Development And Cancer, Nicolas Veland

UT GSBS Dissertations and Theses (Open Access)

DNA methylation is an essential epigenetic modification in mammals, as it plays important regulatory roles in multiple biological processes, such as gene transcription, maintenance of chromosomal structure and genomic stability, genomic imprinting, retrotransposon silencing, and X-chromosome inactivation. Dysregulation of DNA methylation is associated with various human diseases. For example, cancer cells usually show global hypomethylation and regional hypermenthylation, which have been implicated in genomic instability and tumor suppressor silencing, respectively. Although great progress has been made in elucidating the biological functions of DNA methylation over the last several decades, how DNA methylation patterns and levels are regulated and dysregulated is ...


Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor May 2018

Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor

UT GSBS Dissertations and Theses (Open Access)

Bacillus anthracis produces three regulators, AtxA, AcpA, and AcpB, that control virulence gene expression and are members of an emerging class of regulators termed “PCVRs” (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA controls expression of the toxin genes; lef, cya, and pag, and is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA activity result in capBCADE transcription in strains lacking acpA and acpB. RNA-Seq was used to assess the regulons of the paralogs in strains ...


Nanoscale Organization Of The Small Gtpase Rac1, Kelsey Maxwell May 2018

Nanoscale Organization Of The Small Gtpase Rac1, Kelsey Maxwell

UT GSBS Dissertations and Theses (Open Access)

Rac1 is a small, guanine-nucleotide binding protein that cycles between an inactive GDP-bound and active GTP-bound state to regulate actin-mediated motility, migration, and adhesion. Plasma membrane (PM) localization is essential for its biological activity. Rac1 PM targeting is directed by a C-terminal membrane anchor that encompasses a geranylgeranyl-cysteine-methyl-ester, palmitoyl, and a polybasic domain (PBD) of contiguous lysine and arginine residues. Using high-resolution imaging combined with spatial mapping analysis, I found that Rac1 forms nanoclusters on the PM. Cycling between the GTP- and GDP-bound states, Rac1 forms nanoclusters that are non-overlapping, consequently undergoing guanine nucleotide-dependent spatial segregation. I further found that ...


Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire May 2018

Investigating The Impact Of Intragenic Dna Methylation On Gene Expression, And The Clinical Implications On Tumor Cells And Associated Stroma, Michael Mcguire

UT GSBS Dissertations and Theses (Open Access)

Investigations into the function of non-promoter DNA methylation have yielded new insights into epigenetic regulation of gene expression. Previous studies have highlighted the importance of distinguishing between DNA methylation in discrete functional regions; however, integrated non-promoter DNA methylation and gene expression analyses across a wide number of tumor types and corresponding normal tissues have not been performed. Through integrated analysis of gene expression and DNA methylation profiles, we uncovered an enrichment of DNA methylation sites within the gene body and 3’UTR in which DNA methylation is strongly positively correlated with gene expression. We examined 32 tumor types and identified ...


The Functions Of Setd5 And Mir-221 In Embryonic Stem Cell Differentiation, Tsai-Yu Chen Dec 2017

The Functions Of Setd5 And Mir-221 In Embryonic Stem Cell Differentiation, Tsai-Yu Chen

UT GSBS Dissertations and Theses (Open Access)

Embryonic stem cells (ESCs) are a widely used model system to study cellular differentiation because of their pluripotent characteristics, and ESC differentiation is an epigenetic process. In an effort to identify a new epigenetic factor that is required for ESC differentiation, the function of SETD5 in ESCs was studied for this thesis. Results show that SETD5 is essential for retinoic acid (RA)-induced differentiation of mouse ESCs and for RA-induced expression of critical developmental genes (e.g., Hoxa1 and Hoxa2) and neuron-related genes (e.g., Nestin and Pax6). SETD5 was upregulated during ESC differentiation. Additional results demonstrated that SETD5 bound ...


Characterization Of Notch1 And Pi3k-Pten-Akt/Mtor Pathway Interaction In Head And Neck Squamous Cell Carcinoma, Kyriante' Henry Dec 2017

Characterization Of Notch1 And Pi3k-Pten-Akt/Mtor Pathway Interaction In Head And Neck Squamous Cell Carcinoma, Kyriante' Henry

UT GSBS Dissertations and Theses (Open Access)

Head and neck squamous cell carcinoma (HNSCC) affects various mucosal sites of the upper aerodigestive tract, including the nasal and oral cavities, the nasopharynx, and the oropharynx. More than five hundred thousand new cases of HNSCC occurred in 2011 alone, with 50,000 reported cases in the United States. This trend made HNSCC the seventh most common non-skin cancer worldwide (Ferlay et al., 2015). Although significant epidemiological and pathological advancements have been made, survival rates have not improved much over the last 40 years, leaving a mortality rate that remains at approximately 50%. An unbiased drug screen demonstrated that HNSCC ...


Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon Dec 2017

Insights Into The Therapeutic Potential Of Salt Inducible Kinase 1: A Novel Mechanism Of Metabolic Control, Randi Fitzgibbon

UT GSBS Dissertations and Theses (Open Access)

Salt inducible kinase 1 (SIK1) has been considered a stress-inducible kinase since it was first cloned in 1999. Continued efforts since this time have been dedicated to characterizing the structure and function of SIK1. Such research has laid the ground work for our understanding of SIK1 action and regulation in tissue and stimuli dependent manners. The fundamental findings of this dissertation continue in this tradition and include investigations of SIK1 regulatory mechanisms in skeletal muscle cells, the cellular and physiological effects of SIK1 loss of function in vitro and in vivo, and intracellular metabolic and mitochondrial regulation by this kinase ...


Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes Dec 2017

Endocytic Trafficking Of The Amyloid Precursor Protein In Rat Cortical Neurons, Sahily Reyes

UT GSBS Dissertations and Theses (Open Access)

Amyloid-beta (Aβ) aggregation and deposition into extracellular plaques is a hallmark of the most common forms of dementia, including Alzheimer’s disease. The Aβ-containing plaques result from pathogenic cleavage of amyloid precursor protein (APP) by secretases resulting in intracellular production of Aβ peptides that are secreted and accumulate extracellularly. Despite considerable progress towards understanding APP processing and Aβ aggregation, the mechanisms underlying endosomal production of Aβ peptides and their secretion remain unclear. Using endosomes isolated from cultured primary neurons, we determined that the trafficking of APP from the endosomal membrane into internal vesicles of late endosome/multivesicular bodies (MVB) is ...


Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno Aug 2017

Preclinical Development Of Therapeutic Strategies Against Triple-Negative And Inflammatory Breast Cancer, Angie M. Torres-Adorno

UT GSBS Dissertations and Theses (Open Access)

Triple-negative (TNBC) and inflammatory (IBC) breast cancer are the most aggressive forms of breast cancer, accounting for 20% and 10% of cancer-related deaths, respectively. Among IBC cases, 30% are additionally classified with TNBC molecular pathology, a diagnosis that significantly worsens patient’s prognosis. The current lack of TNBC and IBC molecular understanding prevents the development of effective therapeutic strategies. To identify effective treatments, we explored aberrant apoptosis pathways and cell membrane fluidity as novel therapeutic targets.

We first identified an effective therapeutic strategy against TNBC and IBC by pro-apoptotic protein NOXA-mediated inhibition of the anti-apoptotic protein MCL1 following inhibition of ...


Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang Aug 2017

Gcn5 Impacts Fgf Signaling At Multiple Levels And Activates C-Myc Target Genes During Early Differentiation Of Embryoid Bodies, Li Wang

UT GSBS Dissertations and Theses (Open Access)

Precise control of gene expression during development is orchestrated by transcription factors, signaling pathways and co-regulators, with complex cross-regulatory events often occurring. Growing evidence has identified chromatin modifiers as important regulators for development as well, yet how particular chromatin modifying enzymes affect specific developmental processes remains largely unclear. Embryonic stem cells (ESCs) are self-renewing, pluripotent, and have the abilities to generate almost all cell types in adult tissues. The dual capacity of ESCs to self-renew and differentiate offers unlimited potential for studying gene regulation events at specific developmental stages in vitro that parallel developmental events during embryogenesis in vivo.

In ...


Investigating The Role Of Prmt1 And Arginine Methylation Of Hsp70 In Human Pancreatic Cancer, Liang Wang Aug 2017

Investigating The Role Of Prmt1 And Arginine Methylation Of Hsp70 In Human Pancreatic Cancer, Liang Wang

UT GSBS Dissertations and Theses (Open Access)

Protein arginine methyltransferase 1 (PRMT1) is the major arginine methyltransferase, which catalyzes the addition of one or two methyl groups to the arginine residues of its substrate proteins. The best-known substrate for PRMT1 is histone, while more and more non-histone proteins are now found to be methylated by PRMT1. Dysregulation of PRMT1 is reported in several human cancer types. However, its biological roles in human pancreatic cancer initiation and development are still unclear. In the first part of this study, I found that the expression level of PRMT1 was elevated in both human and mouse pancreatic cancer tissues in immunohistochemistry ...


Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino May 2017

Fret-Based Investigations Of The Structure-Function Relationships In The Nmda Receptor, Drew M. Dolino

UT GSBS Dissertations and Theses (Open Access)

The N-methyl-D-aspartate (NMDA) receptor is one member of a class of proteins known as the ionotropic glutamate receptors. Ionotropic glutamate receptors mediate the majority of excitatory neurotransmission in the central nervous system, with the NMDA receptor standing out among these receptors for its requirement of a co-agonist, its magnesium-block-based coincidence detection, its slow kinetics, its calcium permeability, its allosteric modulation, and its especially important functional roles in synaptic plasticity, excitotoxicity, and more. In recent years, a wealth of structural information has come about describing endpoint structures to high resolution, but such structures are unable to fully resolve the movements ...


Non-Coding Rnas Identify The Intrinsic Molecular Subtypes Of Muscle-Invasive Bladder Cancer, Andrea E. Ochoa May 2017

Non-Coding Rnas Identify The Intrinsic Molecular Subtypes Of Muscle-Invasive Bladder Cancer, Andrea E. Ochoa

UT GSBS Dissertations and Theses (Open Access)

NON-CODING RNAS IDENTIFY THE INTRINSIC MOLECULAR SUBTYPES OF MUSCLE-INVASIVE BLADDER CANCER

Andrea Elizabeth Ochoa, B.S.

Advisory Professors: David J. McConkey, Ph.D. and Joya Chandra, Ph.D.

There has been a recent explosion of genomics data in muscle-invasive bladder cancer (MIBC) to better understand the underlying biology of the disease that leads to the high amount of heterogeneity that is seen clinically. These studies have identified relatively stable intrinsic molecular subtypes of MIBC that show similarities to the basal and luminal subtypes of breast cancer. However, previous studies have primarily focused on protein-coding genes or DNA mutations/alterations.

There ...


Analysis Of The Biochemical And Cellular Activities Of Substrate Binding By The Molecular Chaperone Hsp110/Sse1, Veronica M. Garcia May 2017

Analysis Of The Biochemical And Cellular Activities Of Substrate Binding By The Molecular Chaperone Hsp110/Sse1, Veronica M. Garcia

UT GSBS Dissertations and Theses (Open Access)

Molecular chaperones ensure protein quality during protein synthesis, delivery, damage repair, and degradation. The ubiquitous and highly conserved molecular chaperone 70-kDa heat-shock proteins (Hsp70s) are essential in maintaining protein homeostasis by cycling through high and low affinity binding of unfolded protein clients to facilitate folding. The Hsp110 class of chaperones are divergent relatives of Hsp70 that are extremely effective in preventing protein aggregation but lack the hallmark folding activity seen in Hsp70s. Hsp110s serve as Hsp70 nucleotide exchange factors (NEF) that facilitate the Hsp70 folding cycle by inducing release of protein substrate from Hsp70, thus recycling the chaperone for a ...


Phopsphorylation And Ubiquitin Modification At Dna Damage Sites In Response To Double-Strand Breaks, Atanu Paul May 2017

Phopsphorylation And Ubiquitin Modification At Dna Damage Sites In Response To Double-Strand Breaks, Atanu Paul

UT GSBS Dissertations and Theses (Open Access)

Genomes of all organisms are continuously damaged by numerous exogenous and endogenous sources leading to different kinds of DNA lesions, which if not repaired efficiently may trigger wide-scale genomic instability, a hallmark of cancer development. To overcome this, cells have evolved a sophisticated sensory network called the DNA damage response (DDR) comprised of a large number of distinct protein complexes categorized as sensor, mediator, transducer and effector proteins that amplify the DNA damage signal and activate cell cycle checkpoint to initiate DNA repair or trigger apoptosis where the defect is beyond repair. This intricate signaling pathway is tightly regulated by ...


The Role Of Adenosine Signaling In Mature Erythrocytes And Erythroid Progenitors, Hong Liu May 2017

The Role Of Adenosine Signaling In Mature Erythrocytes And Erythroid Progenitors, Hong Liu

UT GSBS Dissertations and Theses (Open Access)

Adenosine is a ubiquitous nucleoside in almost all the cells throughout our bodies. It is highly induced particularly under hypoxia or energy depletion conditions. Adenosine functions as a critical ligand, after binding to membrane-associated adenosine receptors, adenosine initiates a downstream signaling cascade and subsequently contributes to functions of nervous system, immune response, vascular function and even metabolism.

Hypoxia is a condition with limited O2 availability in the whole body or a region of the body. It is a major consequence of many respiratory and cardiovascular diseases, as well as for people living and working at high altitudes or other ...


Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal May 2017

Understanding The Mechanism Of Genomic Instability During Replicative Aging In Budding Yeast, Sangita Pal

UT GSBS Dissertations and Theses (Open Access)

Aging brings a gradual decline in molecular fidelity and biological functionality, resulting in age related phenotypes and diseases. Despite continued efforts to uncover the conserved aging pathways among eukaryotes, exact molecular causes of aging are still poorly understood. One of the most important hallmarks of aging is increased genomic instability. However, there remains much ambiguity as to the cause. I am studying the replicative life span (RLS) of the genetically tractable model organism Saccharomyces cerevisiae, or budding yeast using the innovative “mother enrichment program” as the method to isolate unparalleled numbers of aged yeast cells to investigate the molecular changes ...


Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang Dec 2016

Characterization Of Vesicular Monoamine Transporter 2 And Its Role In Parkinson's Disease Pathogenesis Using Drosophila, Antonio Joel Tito Jr., Sheng Zhang

UT GSBS Dissertations and Theses (Open Access)

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by the selective loss of the dopaminergic neurons in the Substantia nigra pars compacta region of the brain. PD is also the most common neurodegenerative disorder and the second most common movement disorder. PD patients exhibit the cardinal symptoms, including tremor of the extremities, rigidity, slowness of movement, and postural instability, after 70-80% of DA neurons degenerate. It is, therefore, imperative to elucidate the underlying mechanisms involved in the selective degeneration of DA neurons. Although increasing numbers of PD genes have been identified, why these largely widely expressed genes ...


The Role Of Phosphorylation In Pam2 Motif-Containing Proteins Mediated Messenger Rna Deadenylation, Kai-Lieh Huang Dec 2016

The Role Of Phosphorylation In Pam2 Motif-Containing Proteins Mediated Messenger Rna Deadenylation, Kai-Lieh Huang

UT GSBS Dissertations and Theses (Open Access)

Phosphorylation regulates many cellular processes. However, its role in mRNA deadenylation, a process to remove poly adenosines from the mature mRNA 3’ end tail, is unclear. The length of poly(A) tail determines mRNA stability and translation efficiency. Poly(A)-binding protein (PABP), which binds to newly synthesized poly(A) tails homogeneously and is known as a scaffold protein for PAM2 motif-containing proteins, plays a pivotal role in the shortening of poly (A) tails. This study is to examine the role of phosphorylation of PAM2 motif–containing proteins in regulating their interactions with PABP and mRNA deadenylation function.

The PAM2 ...


Role Of Phosphorylation In The Regulation Of Prmt5, Alexsandra B. Espejo Sep 2016

Role Of Phosphorylation In The Regulation Of Prmt5, Alexsandra B. Espejo

UT GSBS Dissertations and Theses (Open Access)

PRMT5 is a member of a group of proteins that mediate arginine methylation. It is involved in diverse cellular processes, including cell differentiation, splicing, transcription elongation and epigenetic silencing, and its expression is dysregulated in many cancers. Due to its pleiotropic functions, PRMT5 is subject to multi-level regulation. Post-translational modification (PTM) of proteins can modulate an array of cellular processes by regulating both protein interactions and protein structural changes. PRMT5 is commonly found associated with other proteins; these interactions seem to control both its catalytic activity and its substrate specificity. Recently, it became clear that PRMT5 is phosphorylated at a ...


¬¬Define The Epigenetic Profiles And Subtype-Specific Genes Of Breast Cancer, Wenqian Li Aug 2016

¬¬Define The Epigenetic Profiles And Subtype-Specific Genes Of Breast Cancer, Wenqian Li

UT GSBS Dissertations and Theses (Open Access)

Molecular profiling has identified 5 distinct subtypes of breast cancer, luminal A, luminal B, HER2-enriched, basal-like, and claudin-low breast cancer. These 5 subtypes correlate with hormone response, patient prognosis, and response to therapy. Although steady state gene expression patterns have been explored using expression microarrays, very little is known about the initial, disease-driving transcriptional changes in these cancers or epigenetic changes associated with the differential gene expression signatures. Defining these changes may provide new insights into the mechanisms by which these subtypes arise, as well as new avenues for breast cancer prevention, diagnosis, and treatment. Using Chromatin Immunoprecipitation sequencing and ...


Defining The Functions Of Usp22 And Usp44 In Regulation Of H2bub1 Levels, Xianjiang Lan Aug 2016

Defining The Functions Of Usp22 And Usp44 In Regulation Of H2bub1 Levels, Xianjiang Lan

UT GSBS Dissertations and Theses (Open Access)

Aberrant levels of histone ubiquitination are involved in various human diseases including neurodegenerative disorders and cancers. Particularly, Histone H2B monoubiquitination (H2Bub1) is highly associated with gene regulation in both normal cells and diseases. Many deubiquitinases (mainly USPs) are defined to regulate global H2Bub1 levels. However, how these USPs are regulated and how they contribute to diseases are not well understood.

USP22, part of the deubiquitination module (DUBm) in the SAGA complex, is a well-defined regulator of H2Bub1 levels. ATXN7, another crucial subunit of the SAGA DUBm, is involved in a neurodegenerative disease, spinocerebellar ataxia type 7 (SCA7), due to a ...


Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez Aug 2016

Investigating The Roles Of Δnp63 As A Suppressor Of Migration, Invasion, And Metastasis, Ramon E. Flores Gonzalez

UT GSBS Dissertations and Theses (Open Access)

Cancer is one of the leading causes of death and disease in the world. Considerable resources are spent to study and understand cancer, with the hope of developing new treatments and eventually cures that will help millions of people. Efforts to understand cancer are hindered by its inherent complexity and instability. Nonetheless, understanding the basics of tumor development and progression are the key to focused on studying the role of ΔNp63 in cancer, a p53 family member known to be involved in epithelial development, microRNA biogenesis, and stem cell maintenance. Using the strength of in vivo mouse models, we found ...