Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius Jan 2018

Informing Efforts To Develop Nitroreductase For Amine Production, Anne-Frances Miller, Jonathan T. Park, Kyle L. Ferguson, Warintra Pitsawong, Andreas S. Bommarius

Chemistry Faculty Publications

Nitroreductases (NRs) hold promise for converting nitroaromatics to aromatic amines. Nitroaromatic reduction rate increases with Hammett substituent constant for NRs from two different subgroups, confirming substrate identity as a key determinant of reactivity. Amine yields were low, but compounds yielding amines tend to have a large π system and electron withdrawing substituents. Therefore, we also assessed the prospects of varying the enzyme. Several different subgroups of NRs include members able to produce aromatic amines. Comparison of four NR subgroups shows that they provide contrasting substrate binding cavities with distinct constraints on substrate position relative to the flavin. The unique architecture ...


Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode For Catalytically Competent Nitroreductase, Warintra Pitsawong, Chad A. Haynes, Ronald L. Koder, David W. Rodgers, Anne-Frances Miller Jul 2017

Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode For Catalytically Competent Nitroreductase, Warintra Pitsawong, Chad A. Haynes, Ronald L. Koder, David W. Rodgers, Anne-Frances Miller

Chemistry Faculty Publications

Nitroreductase from Enterobacter cloacae (NR) reduces diverse nitroaromatics including herbicides, explosives and prodrugs, and holds promise for bioremediation, prodrug activation and enzyme-assisted synthesis. We solved crystal structures of NR complexes with bound substrate or analog for each of its two half-reactions. We complemented these with kinetic isotope effect (KIE) measurements elucidating H-transfer steps essential to each half-reaction. KIEs indicate hydride transfer from NADH to the flavin consistent with our structure of NR with the NADH analog nicotinic acid adenine dinucleotide (NAAD). The KIE on reduction of p-nitrobenzoic acid (p-NBA) also indicates hydride transfer, and requires revision of prior ...


Hemi-Methylated Dna Regulates Dna Methylation Inheritance Through Allosteric Activation Of H3 Ubiquitylation By Uhrf1, Joseph S. Harrison, Evan M. Cornett, Dennis Goldfarb, Paul A. Darosa, Zimeng M. Li, Feng Yan, Bradley M. Dickson, Angela H. Guo, Daniel V. Cantu, Lilia Kaustov, Peter J. Brown, Cheryl H. Arrowsmith, Dorothy A. Erie, Michael B. Major, Rachel E. Klevit, Krzysztof Krajewski, Brian Kuhlman, Brian D. Strahl, Scott B. Rothbart Sep 2016

Hemi-Methylated Dna Regulates Dna Methylation Inheritance Through Allosteric Activation Of H3 Ubiquitylation By Uhrf1, Joseph S. Harrison, Evan M. Cornett, Dennis Goldfarb, Paul A. Darosa, Zimeng M. Li, Feng Yan, Bradley M. Dickson, Angela H. Guo, Daniel V. Cantu, Lilia Kaustov, Peter J. Brown, Cheryl H. Arrowsmith, Dorothy A. Erie, Michael B. Major, Rachel E. Klevit, Krzysztof Krajewski, Brian Kuhlman, Brian D. Strahl, Scott B. Rothbart

College of the Pacific Faculty Articles

The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the ...


Mechanism Of Lysine 48 Selectivity During Polyubiquitin Chain Formation By The Ube2r1/2 Ubiquitin-Conjugating Enzyme, Spencer Hill, Joseph S. Harrison, Steven M. Lewis, Brian Kuhlman, Gary Kleiger Jun 2016

Mechanism Of Lysine 48 Selectivity During Polyubiquitin Chain Formation By The Ube2r1/2 Ubiquitin-Conjugating Enzyme, Spencer Hill, Joseph S. Harrison, Steven M. Lewis, Brian Kuhlman, Gary Kleiger

College of the Pacific Faculty Articles

Lysine selectivity is of critical importance during polyubiquitin chain formation because the identity of the lysine controls the biological outcome. Ubiquitins are covalently linked in polyubiquitin chains through one of seven lysine residues on its surface and the C terminus of adjacent protomers. Lys 48-linked polyubiquitin chains signal for protein degradation; however, the structural basis for Lys 48 selectivity remains largely unknown. The ubiquitin-conjugating enzyme Ube2R1/2 has exquisite specificity for Lys 48, and computational docking of Ube2R1/2 and ubiquitin predicts that Lys 48 is guided to the active site through a key electrostatic interaction between Arg 54 on ...


An Allosteric Interaction Links Usp7 To Deubiquitination And Chromatin Targeting Of Uhrf1, Zhi-Min Zhang, Scott B. Rothbart, David F. Allison, Qian Cai, Joseph S. Harrison, Lin Li, Yinsheng Wang, Brian D. Strahl, Gang Greg Wang, Jikui Song Sep 2015

An Allosteric Interaction Links Usp7 To Deubiquitination And Chromatin Targeting Of Uhrf1, Zhi-Min Zhang, Scott B. Rothbart, David F. Allison, Qian Cai, Joseph S. Harrison, Lin Li, Yinsheng Wang, Brian D. Strahl, Gang Greg Wang, Jikui Song

College of the Pacific Faculty Articles

The protein stability and chromatin functions of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) are regulated in a cell-cycle-dependent manner. We report a structural characterization of the complex between UHRF1 and the deubiquitinase USP7. The first two UBL domains of USP7 bind to the polybasic region (PBR) of UHRF1, and this interaction is required for the USP7-mediated deubiquitination of UHRF1. Importantly, we find that the USP7-binding site of the UHRF1 PBR overlaps with the region engaging in an intramolecular interaction with the N-terminal tandem Tudor domain (TTD). We show that the USP7-UHRF1 interaction perturbs the TTD-PBR interaction of ...


Crystal Structures Of Human Ctbp In Complex With Substrate Mtob Reveal Active Site Features Useful For Inhibitor Design, Brendan Hilbert, Steven Grossman, Celia Schiffer, William Royer Jan 2015

Crystal Structures Of Human Ctbp In Complex With Substrate Mtob Reveal Active Site Features Useful For Inhibitor Design, Brendan Hilbert, Steven Grossman, Celia Schiffer, William Royer

Celia A. Schiffer

The oncogenic corepressors C-terminal Binding Protein (CtBP) 1 and 2 harbor regulatory d-isomer specific 2-hydroxyacid dehydrogenase (d2-HDH) domains. 4-Methylthio 2-oxobutyric acid (MTOB) exhibits substrate inhibition and can interfere with CtBP oncogenic activity in cell culture and mice. Crystal structures of human CtBP1 and CtBP2 in complex with MTOB and NAD(+) revealed two key features: a conserved tryptophan that likely contributes to substrate specificity and a hydrophilic cavity that links MTOB with an NAD(+) phosphate. Neither feature is present in other d2-HDH enzymes. These structures thus offer key opportunities for the development of highly selective anti-neoplastic CtBP inhibitors. Elsevier B.V ...


Computational De Novo Design And Characterization Of A Protein That Selectively Binds A Highly Hyperpolarizable Abiological Chromophore, H Christopher Fry, Andreas Lehmann, Louise E. Sinks, Inge Asselberghs, Andrey Tronin, Venkata Krishnan, J Kent Blasie, Koen Clays, William F. Degrado, Jeffery G. Saven, Michael J. Therien Sep 2013

Computational De Novo Design And Characterization Of A Protein That Selectively Binds A Highly Hyperpolarizable Abiological Chromophore, H Christopher Fry, Andreas Lehmann, Louise E. Sinks, Inge Asselberghs, Andrey Tronin, Venkata Krishnan, J Kent Blasie, Koen Clays, William F. Degrado, Jeffery G. Saven, Michael J. Therien

Departmental Papers (Chemistry)

This work reports the first example of a single-chain protein computationally designed to contain four α-helical segments and fold to form a four-helix bundle encapsulating a supramolecular abiological chromophore that possesses exceptional nonlinear optical properties. The 109-residue protein, designated SCRPZ-1, binds and disperses an insoluble hyperpolarizable chromophore, ruthenium(II) [5-(4'-ethynyl-(2,2';6',2″-terpyridinyl))-10,20-bis(phenyl)porphinato]zinc(II)-(2,2';6',2″-terpyridine)(2+) (RuPZn) in aqueous buffer solution at a 1:1 stoichiometry. A 1:1 binding stoichiometry of the holoprotein is supported by electronic absorption and circular dichroism spectra, as well as equilibrium ...