Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Imp3 Stabilization Of Wnt5b Mrna Facilitates Taz Activation In Breast Cancer, Sanjoy Samanta, Santosh Guru, Ameer L. Elaimy, John J. Amante, Jianhong Ou, Jun Yu, Lihua Julie Zhu, Arthur M. Mercurio May 2018

Imp3 Stabilization Of Wnt5b Mrna Facilitates Taz Activation In Breast Cancer, Sanjoy Samanta, Santosh Guru, Ameer L. Elaimy, John J. Amante, Jianhong Ou, Jun Yu, Lihua Julie Zhu, Arthur M. Mercurio

Open Access Articles

Insulin-like growth factor-2 mRNA-binding protein 3 (IMP3) is an oncofetal protein associated with many aggressive cancers and implicated in the function of breast cancer stem cells (CSCs). The mechanisms involved, however, are poorly understood. We observed that IMP3 facilitates the activation of TAZ, a transcriptional co-activator of Hippo signaling that is necessary for the function of breast CSCs. The mechanism by which IMP3 activates TAZ involves both mRNA stability and transcriptional regulation. IMP3 stabilizes the mRNA of an alternative WNT ligand (WNT5B) indirectly by repressing miR145-5p, which targets WNT5B, resulting in TAZ activation by alternative WNT signaling. IMP3 also facilitates ...


High-Resolution Proteomic And Lipidomic Analysis Of Exosomes And Microvesicles From Different Cell Sources, Reka A. Haraszti, Marie-Cecile Didiot, Ellen Sapp, John D. Leszyk, Scott A. Shaffer, Hannah E. Rockwell, Fei Gao, Niven R. Narain, Marian Difiglia, Michael A. Kiebish, Neil Aronin, Anastasia Khvorova Nov 2016

High-Resolution Proteomic And Lipidomic Analysis Of Exosomes And Microvesicles From Different Cell Sources, Reka A. Haraszti, Marie-Cecile Didiot, Ellen Sapp, John D. Leszyk, Scott A. Shaffer, Hannah E. Rockwell, Fei Gao, Niven R. Narain, Marian Difiglia, Michael A. Kiebish, Neil Aronin, Anastasia Khvorova

Open Access Articles

Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were ...


The Effect Of Small Molecule 390 On Cxcr4 Receptors, Selam B. Zenebe-Gete '14, Shruti R. Topudurti '14, Shum Andrew, Richard J. Miller May 2014

The Effect Of Small Molecule 390 On Cxcr4 Receptors, Selam B. Zenebe-Gete '14, Shruti R. Topudurti '14, Shum Andrew, Richard J. Miller

Student Publications & Research

CXCR4 is the chemokine receptor which aids in chemotaxis of stem cells, such as those in the bone marrow or the brain. SDF-1 is the natural ligand for the CXCR4 receptor. Similarities between novel molecule 390 synthesized by the Miller Lab and SDF-1 make this novel small molecule a possible agonist of the CXCR4 receptor. To determine whether 390 is an agonist to the CXCR4 receptor, we transfected cells with CXCR4 and exposed them to no agonist [vehicle control], SDF-1, or varying concentrations of our agonist drug. Next, we took calcium images using the dye fura-2, which indicates changes in ...