Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O'Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres Dec 2017

Serine-Dependent Sphingolipid Synthesis Is A Metabolic Liability Of Aneuploid Cells, Sunyoung Hwang, H. Tobias Gustafsson, Ciara O'Sullivan, Gianna Bisceglia, Xinhe Huang, Christian Klose, Andrej Schevchenko, Robert C. Dickson, Paola Cavaliere, Noah Dephoure, Eduardo M. Torres

University of Massachusetts Medical School Faculty Publications

Aneuploidy disrupts cellular homeostasis. However, the molecular mechanisms underlying the physiological responses and adaptation to aneuploidy are not well understood. Deciphering these mechanisms is important because aneuploidy is associated with diseases, including intellectual disability and cancer. Although tumors and mammalian aneuploid cells, including several cancer cell lines, show altered levels of sphingolipids, the role of sphingolipids in aneuploidy remains unknown. Here, we show that ceramides and long-chain bases, sphingolipid molecules that slow proliferation and promote survival, are increased by aneuploidy. Sphingolipid levels are tightly linked to serine synthesis, and inhibiting either serine or sphingolipid synthesis can specifically impair the fitness ...


Critical Role For Arginase 2 In Obesity-Associated Pancreatic Cancer, Tamara Zaytouni, Pei-Yun Tsai, Daniel S. Hitchcock, Cory D. Dubois, Elizaveta Freinkman, Lin Lin, Vicente Morales-Oyarvide, Patrick J. Lenehan, Brian M. Wolpin, Mari Mino-Kenudson, Eduardo M. Torres, Nicholas Stylopoulos, Clary B. Clish, Nada Y. Kalaany Aug 2017

Critical Role For Arginase 2 In Obesity-Associated Pancreatic Cancer, Tamara Zaytouni, Pei-Yun Tsai, Daniel S. Hitchcock, Cory D. Dubois, Elizaveta Freinkman, Lin Lin, Vicente Morales-Oyarvide, Patrick J. Lenehan, Brian M. Wolpin, Mari Mino-Kenudson, Eduardo M. Torres, Nicholas Stylopoulos, Clary B. Clish, Nada Y. Kalaany

UMass Metabolic Network Publications

Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Despite recent identification of metabolic alterations in this lethal malignancy, the metabolic dependencies of obesity-associated PDA remain unknown. Here we show that obesity-driven PDA exhibits accelerated growth and a striking transcriptional enrichment for pathways regulating nitrogen metabolism. We find that the mitochondrial form of arginase (ARG2), which hydrolyzes arginine into ornithine and urea, is induced upon obesity, and silencing or loss of ARG2 markedly suppresses PDA. In vivo infusion of (15)N-glutamine in obese mouse models of PDA demonstrates enhanced nitrogen flux into the urea cycle and infusion of ...


Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan Jun 2017

Exploring Cancer Metabolism Using Stable Isotope-Resolved Metabolomics (Sirm), Ronald C. Bruntz, Andrew N. Lane, Richard M. Higashi, Teresa W. -M. Fan

Center for Environmental and Systems Biochemistry Faculty Publications

Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.


Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon Feb 2017

Lipid Sensing By Mammalian Target Of Rapamycin, Deepak Menon

All Dissertations, Theses, and Capstone Projects

Mammalian target of Rapamycin (mTOR) is a protein kinase that integrates nutrient and growth factor signals to promote cellular growth and proliferation. mTOR exists in two complexes - mTORC1 and mTORC2 that are distinguished by their binding partners and signaling inputs. mTORC1 is responsive to growth factors, amino acids and glucose and is associated with Raptor; whereas, mTORC2 is responsive primarily to growth factors and is associated with Rictor. Raptor and Rictor confer substrate specificity to mTORC1 and mTORC2 respectively. Phosphatidic acid (PA), a lipid second messenger and a central metabolite for membrane phospholipid biosynthesis, is required for the stability and ...


Cancer Metabolism: Fueling More Than Just Growth, Namgyu Lee, Dohoon Kim Dec 2016

Cancer Metabolism: Fueling More Than Just Growth, Namgyu Lee, Dohoon Kim

UMass Metabolic Network Publications

The early landmark discoveries in cancer metabolism research have uncovered metabolic processes that support rapid proliferation, such as aerobic glycolysis (Warburg effect), glutaminolysis, and increased nucleotide biosynthesis. However, there are limitations to the effectiveness of specifically targeting the metabolic processes which support rapid proliferation. First, as other normal proliferative tissues also share similar metabolic features, they may also be affected by such treatments. Secondly, targeting proliferative metabolism may only target the highly proliferating "bulk tumor" cells and not the slower-growing, clinically relevant cancer stem cell subpopulations which may be required for an effective cure. An emerging body of research indicates ...


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

UT GSBS Dissertations and Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and is ...


Diabetes And Obesity Induce Transcriptomic And Metabolomic Changes Enhancing Pancreatic Cancer Aggressiveness, Guermarie Velázquez Torres May 2014

Diabetes And Obesity Induce Transcriptomic And Metabolomic Changes Enhancing Pancreatic Cancer Aggressiveness, Guermarie Velázquez Torres

UT GSBS Dissertations and Theses (Open Access)

Pancreatic cancer is one of the most aggressive types of cancer, with poor prognosis that lacks effective diagnostic markers and therapies. It is expected that in 2014 the incidence and the mortality of pancreatic cancer in the United States will be 46,420 and 39,590 respectively. Diabetes and obesity are modifiable risk factors associated with accelerated pancreatic carcinogenesis and tumor progression, but the biological mechanisms are not completely understood. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating these epidemiologic phenomena. Our hypothesis is that obesity and diabetes mellitus type 2 (DM2) accelerate pancreatic ...


Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic Jan 2012

Cdk1 And Plk1 Mediate A Clasp2 Phospho-Switch That Stabilizes Kinetochore–Microtubule Attachments, Ana R. R. Maia, Zaira Garcia, Lilian Kabeche, Marin Barisic

Open Dartmouth: Faculty Open Access Scholarship

Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to ...