Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A Crispr Platform For Rapid And Inducible Genome Editing In Human Non-Small Cell Lung Cancer Cells, Lloyd Bartley Nov 2018

A Crispr Platform For Rapid And Inducible Genome Editing In Human Non-Small Cell Lung Cancer Cells, Lloyd Bartley

Posters-at-the-Capitol

Non-small cell lung cancer (NSCLC) accounts for about 85% of lung cancer, which is the leading cause of cancer death in the world. High mortality rate associated with NSCLC is partially attributed to the limited understanding of NSCLC as well as ineffective therapeutic treatments. The initiation and progression of NSCLC involves genetic changes leading to alterations in the control of tissue development and homeostatic maintenance. Better knowledge about these genetic abnormalities is imperative for developing new chemotherapeutic drugs for NSCLC. Recent research demonstrates that the expression of paraoxonase 2 (PON2), a lactonase/arylesterase with anti-oxidant properties, are markedly enhanced in ...


Development Of A Pd-L1 Pet Imaging Biomarker, Caleb Jack Bridgwater Nov 2018

Development Of A Pd-L1 Pet Imaging Biomarker, Caleb Jack Bridgwater

Posters-at-the-Capitol

Immunotherapy strategies are very promising treatments for cancer patients. Specifically, Immune checkpoint inhibitor therapy focusing on the PD-1/PD-L1 pathway shows long-lasting positive results in many cancer patients. Unfortunately, not all the patients can benefit from this highly effective treatment. Hence, there is a great need for predictive biomarkers. Immunohistochemical (IHC) staining has been used as a way of predicting patient response, yet shows many problems. For example, IHC utilizes an invasive biopsy and sample fixing, which creates an incomplete and delayed picture of the patient’s biochemistry and the tumor microenvironment, consequently ignoring metastases.

The purpose of this study ...


Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke Nov 2018

Combined High-Speed Single Particle Tracking Of Membrane Proteins And Super-Resolution Of Membrane-Associated Structures, Hanieh Mazloom Farsibaf, Keith A. Lidke

Shared Knowledge Conference

Many experiments have shown that the diffusive motion of lipids and membrane proteins are slower on the cell surface than those in artificial lipid bilayers or blebs. One hypothesis that may partially explain this mystery is the effect of the cytoskeleton structures on the protein dynamics. A model proposed by Kusumi [1] is the Fence-Picket Model which describes the cell membrane as a set of compartment regions, each ~ 10 to 200 nm in size, created by direct or indirect interaction of lipids and proteins with actin filaments just below the membrane. To test this hypothesis, we have assembled a high-speed ...


Tumor Formation In Response To Loss Of Chromatin Remodeler Chd5 In Zebrafish, Taylor R. Sabato, Erin L. Sorlien, Dr. Joseph P. Ogas Aug 2017

Tumor Formation In Response To Loss Of Chromatin Remodeler Chd5 In Zebrafish, Taylor R. Sabato, Erin L. Sorlien, Dr. Joseph P. Ogas

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chromodomain helicase DNA binding protein 5 (CHD5) has been identified as a tumor suppressor in humans. Deletion or mutation of CHD5 has been observed in numerous cancers, including neuroblastoma and melanoma. We hypothesize that chd5 is also a tumor suppressor in zebrafish, a powerful model system to study tumorigenesis. Many genes involved in tumorigenesis are conserved in zebrafish, and they develop fully penetrant tumor phenotypes. We have created chd5 knock-out zebrafish using CRISPR/Cas9 and are monitoring them for tumor development. In addition to the chd5 knock-outs, we are undertaking a double-mutant approach by coupling loss of ...


Engineering Fret Biosensors For Microrna Presence/Absence Analysis, Nicholas E. Larkey, Sean M. Burrows Feb 2017

Engineering Fret Biosensors For Microrna Presence/Absence Analysis, Nicholas E. Larkey, Sean M. Burrows

Biomedical Engineering Western Regional Conference

No abstract provided.


Pt-Mal-Lhrh Mediates Breast Cancer Cell Cytotoxicity Through Increased Apoptosis, Kendall E. Collins Nov 2016

Pt-Mal-Lhrh Mediates Breast Cancer Cell Cytotoxicity Through Increased Apoptosis, Kendall E. Collins

Posters-at-the-Capitol

In the United States one in eight women will be afflicted with breast cancer. It is estimated that in 2016 there will be approximately 246,600 new invasive breast cancer cases and 61,000 new non-invasive cases. Triple negative breast cancers account for 15% of all breast cancers and are significantly more aggressive than other subtypes. Treatment options for triple negative breast cancer are limited due to the cancers not expressing the estrogen, progestogen, or herceptin receptors making them unresponsive to hormonal therapy. Our recent work centers around developing a novel chemotherapeutic agent that will direct therapy selectively to triple ...


Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj Aug 2016

Nanobubbles Provide Theranostic Relief To Cancer Hypoxia, Christopher M. Long, Pushpak N. Bhandari, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hypoxia is a common motif among tumors, contributing to metastasis, angiogenesis, cellular epigenetic abnormality, and resistance to cancer therapy. Hypoxia also plays a pivotal role in oncological studies, where it can be used as a principal target for new anti-cancer therapeutic methods. Oxygen nanobubbles were designed in an effort to target the hypoxic tumor regions, thus interrupting the hypoxia-inducible factor-1α (HIF-1α) regulatory pathway and inhibiting tumor progression. At less than 100nm, oxygen nanobubbles act as a vehicle for site-specific oxygen delivery, while also serving as an ultrasound contrast agent for advanced imaging purposes. Through in vitro and in vivo studies ...


Structural Activity Relationship Study On Dual Plk1 /Brd4 Inhibitor, Bi- 2536, Hailemichael Yosief, Shuai Liu, Dennis L. Buckley, Justin M. Roberts, Alex M. Muthengi, Francesca M. Corsini, James E. Bradner, Wei Zhang May 2016

Structural Activity Relationship Study On Dual Plk1 /Brd4 Inhibitor, Bi- 2536, Hailemichael Yosief, Shuai Liu, Dennis L. Buckley, Justin M. Roberts, Alex M. Muthengi, Francesca M. Corsini, James E. Bradner, Wei Zhang

UMass Center for Clinical and Translational Science Research Retreat

Polo-like kinase 1 (PLK1) and BRD4 are two different therapeutic targets in cancer drug discovery. Recently it has been reported that PLK1 inhibitor, BI-2536, is also a potent inhibitor of BRD4. The simultaneous inhibition of PLK1 and BRD4 by a single drug molecule is interesting because this could lead to the development of effective therapeutic strategy for different types of disease conditions in which PLK1 and BRD4 are implicated. Structural activity relationship studies has been carried out on BI-2536 to generate analogs with enhanced dual inhibitory activity against BRD4 and PLK1 as well as to render the molecule selective to ...


Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar Aug 2015

Elucidating The Role Of Hausp Ubiquitin Like Domains In The Catalytic Function Of Usp7, Anuj Patel, Nicole Davis, Andrew Mesecar

The Summer Undergraduate Research Fellowship (SURF) Symposium

Ubiquitin specific proteases (USPs) are a class of enzymes involved in myriad cellular processes. One USP of great interest due to its oncogenic properties is USP7. In normal conditions USP7 is closely regulated due to its responsibility for destabilizing the tumor suppressor, p53, through the deubiquitination of MDM2. In multiple myeloma cases, it appears the regulation of USP7 subsides, as it is largely overexpressed, leading to the inappropriate degradation of p53. Inhibition of USP7 could, therefore, prove a viable target for cancer therapy. A greater understanding of USP7’s function and structure can lead to more insight into how this ...


Inhibition Of Colon Cancer By Polyphenols From Whole Cranberry, Catherine Neto, Anne Liberty, Sarah Frade, Anuradha Tata, Tracie Ferreira, Mingyue Song, Xian Wu, Hang Xiao May 2014

Inhibition Of Colon Cancer By Polyphenols From Whole Cranberry, Catherine Neto, Anne Liberty, Sarah Frade, Anuradha Tata, Tracie Ferreira, Mingyue Song, Xian Wu, Hang Xiao

UMass Center for Clinical and Translational Science Research Retreat

The ability of cranberry fruit extracts to inhibit colon carcinogenesis is under investigation using a combination of in vitro and in vivo methods. Compounds isolated from cranberry fruit (Vaccinium macrocarpon) including oligomeric polyphenols known as proanthocyanidins (PACs) decreased the proliferation of HCT116 and HT-29 colon cancer cells, induced apoptosis and reduced the formation of tumor colonies. Treatment of HCT116 colon cancer cells with cranberry polyphenols produced changes in expression of genes and proteins associated with the MAPK pathway, confirmed by microarray analysis, quantitative (Q)-PCR and Western blotting. Based on cranberry's effect in vitro, a feeding study was conducted ...


Inhibition Of Bromodomain Proteins In Treatment Of Diffuse Large B-Cell Lymphoma, Sally E. Trabucco, Rachel M. Gerstein, Andrew M. Evens, James E. Bradner, Leonard D. Shultz, Dale L. Greiner May 2014

Inhibition Of Bromodomain Proteins In Treatment Of Diffuse Large B-Cell Lymphoma, Sally E. Trabucco, Rachel M. Gerstein, Andrew M. Evens, James E. Bradner, Leonard D. Shultz, Dale L. Greiner

UMass Center for Clinical and Translational Science Research Retreat

Only ~50% of patients with diffuse large B-cell lymphoma (DLBCL), the most common and aggressive subtype of non-Hodgkin’s lymphoma, enter long-term remission after standard chemotherapy, and patients who do not respond to treatment have few options. Therefore, there is a critical need for effective and targeted therapeutics for DLBCL. Recent studies highlight the incidence of increased c-MYC protein in DLBCL and the correlation between high levels of c-MYC and poor survival prognosis of DLBCL patients, suggesting that c-MYC is a compelling therapeutic target for DLBCL therapy. The small molecule JQ1 suppresses c-MYC expression through inhibition of the BET family ...


Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs Oct 2013

Identification Of Set1 Target Genes, William Beyer, Scott D. Briggs

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Set1 complex, a histone methyltransferase complex found in S. cerevisiae (budding yeast), is the only histone methyltransferase responsible for catalyzing methylation of histone H3 at Lysine 4. It possesses homologues in other species, humans included. While yeast only have the Set1 complex, the human homologues of the yeast Set1 complex include mixed-lineage leukemia family (MLL1-4), Set1 A, Set1 B, among others. MLL1-4 has been shown to play a role in transcription, cell type specification, and the development of leukemia. One application of characterizing the role of a protein is that the information gained can provide insight into the function ...


Molecular Mechanisms Of Fsh Muscular Dystrophy Pathogenesis, Peter L. Jones, Takako I. Jones May 2013

Molecular Mechanisms Of Fsh Muscular Dystrophy Pathogenesis, Peter L. Jones, Takako I. Jones

UMass Center for Clinical and Translational Science Research Retreat

Discussion of a new research initiative at UMass Medical School focused on the pathogenesis of Facioscapulohumeral Muscular Dystrophy (FSHD) and efforts towards diagnostics and therapeutics. This presentation is part of the retreat mini-symposium entitled: Neuromuscular Diseases: Pathogenesis and the Road to Therapeutics.


Glyconanoparticle Uptake Profile In Lung Carcinoma Cells, Kalana W. Jayawardana, H. Surangi N. Jayawardena, Thareendra De Zoysa, Mingdi Yan May 2013

Glyconanoparticle Uptake Profile In Lung Carcinoma Cells, Kalana W. Jayawardana, H. Surangi N. Jayawardena, Thareendra De Zoysa, Mingdi Yan

UMass Center for Clinical and Translational Science Research Retreat

Non-small cell lung carcinoma (NSCLC) is responsible for nearly 85% of lung cancer, and early diagnosis and treatment of lung cancer can circumvent possible death. We focus on glyconanoparticles with a magnetic or a fluorescent core that act as multivalent glyco-scaffold to study cell surface interaction and internalization. The glyconanoparticles were synthesized by conjugating various carbohydrates on magnetic nanoparticles and fluorescent silica nanoparticles by a photocoupling technique developed in our laboratory. The size of nanoparticles used varies from 6 nm to 60 nm. The resulting glyconanoparticles were treated with human adenocarcinoma non-small lung epithelial cells (A549) and the primary small ...


Regulation Of Androgen Receptor Co-Regulators By Activation Of The Cxcl12/Cxcr4 Axis: A Microarray And Proteomics Approach, Sathish Kasina, Lesa Begley, Henriette Remmer, Jill A. Macoska May 2013

Regulation Of Androgen Receptor Co-Regulators By Activation Of The Cxcl12/Cxcr4 Axis: A Microarray And Proteomics Approach, Sathish Kasina, Lesa Begley, Henriette Remmer, Jill A. Macoska

UMass Center for Clinical and Translational Science Research Retreat

Background: Activation of the CXCL12/CXCR4 axis is known to stimulate androgen-independent activation of the androgen receptor (AR) in the LNCaP prostate cancer cell line. In the present study, the CXCL12-stimulated expression profile of androgen responsive genes (ARGs) and AR:co-regulator protein:protein interactions has been identified by microarray and proteomic analysis, respectively.

Methods: To directly identify proteins that interacted with the AR in response to CXCL12 stimulation, LNCaP cells treated with CXCL12 were subjected to a total proteomics analysis after co-immunoprecipitation (co-IP) with anti-AR antibody. AR- interacting proteins from co-IP were pre-fractionated by SDS-PAGE, in-gel trypsin digested, and analyzed ...