Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Requirement Of C-Jun Nh(2)-Terminal Kinase For Ras-Initiated Tumor Formation, Cristina Arrigo Cellurale, Guadalupe Sabio, Norman J. Kennedy, Madhumita Das, Marissa Bylsma, Peter Sandy, Tyler Jacks, Roger J. Davis Apr 2011

Requirement Of C-Jun Nh(2)-Terminal Kinase For Ras-Initiated Tumor Formation, Cristina Arrigo Cellurale, Guadalupe Sabio, Norman J. Kennedy, Madhumita Das, Marissa Bylsma, Peter Sandy, Tyler Jacks, Roger J. Davis

Davis Lab Publications

The c-Jun NH(2)-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these ...


The Role Of Jnk In The Development Of Hepatocellular Carcinoma, Madhumita Das, David S. Garlick, Dale Greiner, Roger J. Davis Mar 2011

The Role Of Jnk In The Development Of Hepatocellular Carcinoma, Madhumita Das, David S. Garlick, Dale Greiner, Roger J. Davis

Davis Lab Publications

The cJun NH(2)-terminal kinase (JNK) signal transduction pathway has been implicated in the growth of carcinogen-induced hepatocellular carcinoma. However, the mechanism that accounts for JNK-regulated tumor growth is unclear. Here we demonstrate that compound deficiency of the two ubiquitously expressed JNK isoforms (JNK1 and JNK2) in hepatocytes does not prevent hepatocellular carcinoma development. Indeed, JNK deficiency in hepatocytes increased the tumor burden. In contrast, compound JNK deficiency in hepatocytes and nonparenchymal cells reduced both hepatic inflammation and tumorigenesis. These data indicate that JNK plays a dual role in the development of hepatocellular carcinoma. JNK promotes an inflammatory hepatic ...