Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel Nov 2017

Mitochondrial Reactive Oxygen Species In Lipotoxic Hearts Induces Post-Translational Modifications Of Akap121, Drp1 And Opa1 That Promote Mitochondrial Fission, Kensuke Tsushima, Heiko Bugger, Adam R. Wende, Jamie Soto, Gregory A. Jenson, Austin R. Tor, Rose Mcglauflin, Helena C. Kenny, Yuan Zhang, Rhonda Souvenir, Xiao X. Hu, Crystal L. Sloan, Renata O. Pereira, Vitor A. Lira, Kenneth W. Spitzer, Terry L. Sharp, Kooresh I. Shoghi, Genevieve C. Sparagna, Eva A. Rog-Zielinska, Peter Kohl, Oleh Khalimonchuk, Jean E. Schaffer, E. Dale Abel

Biochemistry -- Faculty Publications

Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood.

Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo.

Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation ...


Sending Out An Sos: Mitochondria As A Signaling Hub, Iryna Bohovych, Oleh Khalimonchuk Sep 2016

Sending Out An Sos: Mitochondria As A Signaling Hub, Iryna Bohovych, Oleh Khalimonchuk

Biochemistry -- Faculty Publications

Normal cellular physiology is critically dependent on numerous mitochondrial activities including energy conversion, cofactor and precursor metabolite synthesis, and regulation of ion and redox homeostasis. Advances in mitochondrial research during the last two decades provide solid evidence that these organelles are deeply integrated with the rest of the cell and multiple mechanisms are in place to monitor and communicate functional states of mitochondria. In many cases, however, the exact molecular nature of various mitochondria-to-cell communication pathways is only beginning to emerge. Here, we review various signals emitted by distressed or dysfunctional mitochondria and the stress-responsive pathways activated in response to ...


Molecular And Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions, Mohamed H. El-Shetehy Jan 2016

Molecular And Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions, Mohamed H. El-Shetehy

Theses and Dissertations--Plant Pathology

Systemic acquired resistance (SAR) is a form of inducible defense response triggered upon localized infection that confers broad-spectrum disease resistance against secondary infections. Several factors are known to regulate SAR and these include phenolic phytohormone salicylic acid (SA), phosphorylated sugar glycerol-3-phosphate (G3P), and dicarboxylic acid azelaic acid (AzA). This study evaluated a role for free radicals nitric oxide (NO) and reactive oxygen species (ROS) in SAR. Normal accumulation of both NO and ROS was required for normal SAR and mutations preventing NO/ROS accumulation and/or biosynthesis compromised SAR. A role for NO and ROS was further established using pharmacological ...


Sestrin2, A Regulator Of Thermogenesis And Mitohormesis In Brown Adipose Tissue, Seung-Hyun Ro, Ian Semple, Allison Ho, Hwan-Woo Park, Jun Hee Lee Jan 2015

Sestrin2, A Regulator Of Thermogenesis And Mitohormesis In Brown Adipose Tissue, Seung-Hyun Ro, Ian Semple, Allison Ho, Hwan-Woo Park, Jun Hee Lee

Biochemistry -- Faculty Publications

Sestrin2 is a stress-inducible protein that functions as an antioxidant and inhibitor of mTOR complex 1. In a recent study, we found that Sestrin2 overexpression in brown adipocytes interfered with normal metabolism by reducing mitochondrial respiration through the suppression of uncoupling protein 1 (UCP1) expression. The metabolic effects of Sestrin2 in brown adipocytes were dependent on its antioxidant activity, and chemical antioxidants produced similar effects in inhibiting UCP1-dependent thermogenesis. These observations suggest that low levels of reactive oxygen species (ROS) in brown adipocytes can actually be beneficial and necessary for proper metabolic homeostasis. In addition, considering that Sestrins are ROS ...