Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biotechnology

Mitochondria

2017

Articles 1 - 2 of 2

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Ydj1 Governs Fungal Morphogenesis And Stress Response, And Facilitates Mitochondrial Protein Import Via Mas1 And Mas2, Jinglin L. Xie, Iryna Bohovych, Erin O.Y. Wong, Jean-Philippe Lambert, Anne-Claude Gingras, Oleh Khalimonchuk, Leah E. Cowen, Michelle D. Leach Oct 2017

Ydj1 Governs Fungal Morphogenesis And Stress Response, And Facilitates Mitochondrial Protein Import Via Mas1 And Mas2, Jinglin L. Xie, Iryna Bohovych, Erin O.Y. Wong, Jean-Philippe Lambert, Anne-Claude Gingras, Oleh Khalimonchuk, Leah E. Cowen, Michelle D. Leach

Biochemistry -- Faculty Publications

Mitochondria underpin metabolism, bioenergetics, signalling, development and cell death in eukaryotes. Most of the ~1,000 yeast mitochondrial proteins are encoded in the nucleus and synthesised as precursors in the cytosol, with mitochondrial import facilitated by molecular chaperones. Here, we focus on the Hsp40 chaperone Ydj1 in the fungal pathogen Candida albicans, finding that it is localised to both the cytosol and outer mitochondrial membrane, and is required for cellular stress responses and for filamentation, a key virulence trait. Mapping the Ydj1 protein interaction network highlighted connections with co-chaperones and regulators of filamentation. Furthermore, the mitochondrial processing peptidases Mas1 and ...


Metalloproteases Of The Inner Mitochondrial Membrane, Roman M. Levytskyy, Iryna Bohovych, Oleh Khalimonchuk Aug 2017

Metalloproteases Of The Inner Mitochondrial Membrane, Roman M. Levytskyy, Iryna Bohovych, Oleh Khalimonchuk

Biochemistry -- Faculty Publications

The inner mitochondrial membrane (IM) is among most protein-rich cellular compartments. The metastable IM sub-proteome where the concentration of proteins is approaching oversaturation creates a challenging protein folding environment with high probability for protein malfunction or aggregation. Failure to maintain protein homeostasis in such a setting can impair functional integrity of the mitochondria and drive clinical manifestations. The IM is equipped with a series of highly conserved, proteolytic complexes dedicated to the maintenance of normal protein homeostasis within this mitochondrial sub-compartment. Particularly important is a group of membrane-anchored metallopeptidases commonly known as m-AAA and i-AAA proteases, and the ATP-independent Oma1 ...