Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

The Role Of Alternative Polyadenylation Mediated By Cpsf30 In Arabidopsis Thaliana, Guijie Hao Jan 2017

The Role Of Alternative Polyadenylation Mediated By Cpsf30 In Arabidopsis Thaliana, Guijie Hao

Theses and Dissertations--Plant and Soil Sciences

Drought stress is considered one of the most devastating abiotic stress factors that limit crop productivity for modern agriculture worldwide. There is a large range of physiological and biochemical responses induced by drought stress. The responses range from physiological and biochemical to regulation at transcription and posttranscriptional levels. Post-transcription, the products encoded by eukaryotic genes must undergo a series of modifications to become a mature mRNA. Polyadenylation is an important one in terms of regulation. Polyadenylation impacts gene expression through determining the coding and regulation potential of the mRNA, especially when different mRNAs from the same gene may be polyadenylated ...


Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jonathan E. Markham, Xuemin Wang Jan 2014

Overexpression Of Patatin-Related Phospholipase Aiiiβ Altered The Content And Composition Of Sphingolipids In Arabidopsis, Maoyin Li, Jonathan E. Markham, Xuemin Wang

Biochemistry -- Faculty Publications

In plants, fatty acids are primarily synthesized in plastids and then transported to the endoplasmic reticulum (ER) for synthesis of most of the complex membrane lipids, including glycerolipids and sphingolipids. The first step of sphingolipid synthesis, which uses a fatty acid and a serine as substrates, is critical for sphingolipid homeostasis; its disruption leads to an altered plant growth. Phospholipase As have been implicated in the trafficking of fatty acids from plastids to the ER. Previously, we found that overexpression of a patatin-related phospholipase, pPLAIIIβ, resulted in a smaller plant size and altered anisotropic cell expansion. Here, we determined the ...


Development Of A Metabolomic Method To Define The Phenylalanome In Arabidopsis Thaliana, Cole G. Wunderlich, Clint Chapple, Xu Li Oct 2013

Development Of A Metabolomic Method To Define The Phenylalanome In Arabidopsis Thaliana, Cole G. Wunderlich, Clint Chapple, Xu Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the study of metabolomics, one of the greatest challenges can be accurately identifying compounds detected in biological extracts, especially when standards are not readily available. Current metabolomic methods are also limited in that they provide little to no information about a compound’s metabolic origin. In this study, we sought to address these issues by developing a novel metabolomic method that employs stable isotope feeding, LC-MS, Xcms, and an analytical software algorithm to study the ‘phenylalanome’ of Arabidopsis thaliana. Using this approach we were able to develop a method that, based on current results, is capable of detecting over ...


Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali Jul 2013

Identification Of Cyclophilin Gene Family In Soybean And Characterization Of Gmcyp1, Hemanta Raj Mainali

Electronic Thesis and Dissertation Repository

I identified members of the Cyclophilin (CYP) gene family in soybean (Glycine max) and characterized the GmCYP1, one of the members of soybean CYP. CYPs belong to the immunophilin superfamily with peptidyl-prolyl cis-trans isomerase (PPIase) activity. PPIase catalyzes the interconversion of the cis- and trans-rotamers of the peptidyl-prolyl amide bond of peptides. After extensive data mining, I identified 62 different CYP genes in soybean (GmCYP1 to GmCYP62), of which 8 are multi-domain proteins and 54 are single domain proteins. At least 25% of the GmCYP genes are expressed in soybean. GmCYP1 localizes to the nucleus and the cytoplasm and ...