Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

A Novel Transcription Factor In Arabidopsis Thaliana Abiotic Stress Response, Achira S. Weerathunga Arachchilage Dec 2015

A Novel Transcription Factor In Arabidopsis Thaliana Abiotic Stress Response, Achira S. Weerathunga Arachchilage

University of New Orleans Theses and Dissertations

Plants respond to environmental stress by altering their gene expression. Under stress conditions some genes are activated and some genes are repressed. Even though a lot of work has been done to understand mechanisms of gene activation under abiotic stress very little information is available on how stress responsive genes are kept repressed under normal growth conditions. Recent work has revealed that plants use transcriptional repression as common mechanism of gene repression. Transcriptional repression is achieved by recruitment co-repressor complexes to the target genes. Recent studies have revealed that the co-repressor LUH complexes with SLK1 and SLK2 to silence Arabidopsis ...


Identification Of The Transcriptional Co-Repressor Complex And Its Functions In Arabidopsis Thaliana, Barsha Shrestha May 2014

Identification Of The Transcriptional Co-Repressor Complex And Its Functions In Arabidopsis Thaliana, Barsha Shrestha

University of New Orleans Theses and Dissertations

No abstract provided.


Uncovering The Molecular Link Between Mir156.Spl15 And Carotenoid Accumulation In Arabidopsis, Davood Emami Meybodi Oct 2013

Uncovering The Molecular Link Between Mir156.Spl15 And Carotenoid Accumulation In Arabidopsis, Davood Emami Meybodi

Electronic Thesis and Dissertation Repository

Carotenoid Cleavage Dioxygenases (CCDs) are an enzyme family that cleaves specific double bonds in carotenoids. MicroR156 in Arabidopsis regulates a network of genes by repressing 10 SPL genes, among which, SPL15 was found to regulate shoot branching and carotenoid accumulation. The expression of CCD1, CCD4, CCD7, CCD8, NCED2, NCED3, NCED5, NCED6, NCED9 and SPL15 was evaluated in siliques at 10 days post anthesis and in 10-day-old roots in Arabidopsis wild type, sk156 (miR156 overexpression mutant), RS105 (miR156 overexpression line), spl15 (SPL15 knockout mutant) and two 35S:SPL15 lines. Results showed that most of CCD/NCED genes were affected ...


Metabolomics As A Hypothesis-Generating Functional Genomics Tool For The Annotation Of Arabidopsis Thaliana Genes Of “Unknown Function”, Stephanie M. Quanbeck, Libuse Brachova, Alexis A. Campbell, Xin Guan, Ann Perera, Kun He, Seung Y. Rhee, Preeti Bais, Julie A. Dickerson, Philip M. Dixon, Gert Wohlgemuth, Oliver Fiehn, Lenore Barkan, Iris Lange, B. Markus Lange, Insuk Lee, Diego Cortes, Carolina Salazar, Joel Shuman, Vladimir Shulaev, David V. Huhman, Lloyd W. Sumner, Mary R. Roth, Ruth Welti, Hilal Ilarslan, Eve S. Wurtele, Basil J. Nikolau Feb 2012

Metabolomics As A Hypothesis-Generating Functional Genomics Tool For The Annotation Of Arabidopsis Thaliana Genes Of “Unknown Function”, Stephanie M. Quanbeck, Libuse Brachova, Alexis A. Campbell, Xin Guan, Ann Perera, Kun He, Seung Y. Rhee, Preeti Bais, Julie A. Dickerson, Philip M. Dixon, Gert Wohlgemuth, Oliver Fiehn, Lenore Barkan, Iris Lange, B. Markus Lange, Insuk Lee, Diego Cortes, Carolina Salazar, Joel Shuman, Vladimir Shulaev, David V. Huhman, Lloyd W. Sumner, Mary R. Roth, Ruth Welti, Hilal Ilarslan, Eve S. Wurtele, Basil J. Nikolau

Biochemistry, Biophysics and Molecular Biology Publications

Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a metabolic regulatory network, and thus provide insights into the structure and regulation of that network. Because of the chemical complexity of the metabolome and limitations associated with individual analytical platforms for determining the metabolome, it is currently difficult to capture the complete metabolome of an organism or tissue, which is in contrast to genomics and ...