Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biotechnology

Series

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 386

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Unified Methods For Feature Selection In Large-Scale Genomic Studies With Censored Survival Outcomes, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

One of the major goals in large-scale genomic studies is to identify genes with a prognostic impact on time-to-event outcomes which provide insight into the disease's process. With rapid developments in high-throughput genomic technologies in the past two decades, the scientific community is able to monitor the expression levels of tens of thousands of genes and proteins resulting in enormous data sets where the number of genomic features is far greater than the number of subjects. Methods based on univariate Cox regression are often used to select genomic features related to survival outcome; however, the Cox model assumes proportional ...


Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan Mar 2019

Supervised Dimension Reduction For Large-Scale "Omics" Data With Censored Survival Outcomes Under Possible Non-Proportional Hazards, Lauren Spirko-Burns, Karthik Devarajan

COBRA Preprint Series

The past two decades have witnessed significant advances in high-throughput ``omics" technologies such as genomics, proteomics, metabolomics, transcriptomics and radiomics. These technologies have enabled simultaneous measurement of the expression levels of tens of thousands of features from individual patient samples and have generated enormous amounts of data that require analysis and interpretation. One specific area of interest has been in studying the relationship between these features and patient outcomes, such as overall and recurrence-free survival, with the goal of developing a predictive ``omics" profile. Large-scale studies often suffer from the presence of a large fraction of censored observations and potential ...


Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao Feb 2019

Allosteric Mechanism Of The Circadian Protein Vivid Resolved Through Markov State Model And Machine Learning Analysis, Hongyu Zhou, Zheng Dong, Gennady M. Verkhivker, Brian D. Zoltowski, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The fungal circadian clock photoreceptor Vivid (VVD) contains a photosensitive allosteric light, oxygen, voltage (LOV) domain that undergoes a large N-terminal conformational change. The mechanism by which a blue-light driven covalent bond formation leads to a global conformational change remains unclear, which hinders the further development of VVD as an optogenetic tool. We answered this question through a novel computational platform integrating Markov state models, machine learning methods, and newly developed community analysis algorithms. Applying this new integrative approach, we provided a quantitative evaluation of the contribution from the covalent bond to the protein global conformational change, and proposed an ...


Method Development For Structural Assessment Of Nanolipoprotein Particles With And Without Cross-Linked Lipids, Emma J. Mullen, Wei He, Sean Gilmore, Matthias Frank, Matthew Coleman, Megan Shelby Jan 2019

Method Development For Structural Assessment Of Nanolipoprotein Particles With And Without Cross-Linked Lipids, Emma J. Mullen, Wei He, Sean Gilmore, Matthias Frank, Matthew Coleman, Megan Shelby

STAR (STEM Teacher and Researcher) Presentations

Membrane proteins make up approximately 30% of the cellular proteome and account for over 60% of pharmaceutical targets.1 Determining the structures of this class of proteins is critical to our understanding of disease states and will advance rational drug design. But membrane proteins have limited solubility, rarely form large crystals that diffract well, and often misfold outside of a bilayer, hindering crystallographic studies.1 Nanolipoprotein particles (NLPs) have arisen as a platform to readily solubilize membrane proteins while mimicking a native lipid environment. NLPs consist of a discoidal phospholipid bilayer encircled by an apolipoprotein belt. In an effort to ...


Genome‐Wide Association And Genomic Prediction For Biomass Yield In A Genetically Diverse Miscanthus Sinensis Germplasm Panel Phenotyped At Five Locations In Asia And North America, Lindsay V. Clark, Maria S. Dwiyanti, Kossonou G. Anzoua, Joe E. Brummer, Bimal Kumar Ghimire, Katarzyna Glowacka, Megan Hall, Kweon Heo, Xiaoli Jin, Alexander E. Lipka, Junhua Peng, Toshihiko Yamada, Ji Hye Yoo, Chang Yeon Yu, Hua Zhao, Stephen P. Long, Erik J. Sacks Jan 2019

Genome‐Wide Association And Genomic Prediction For Biomass Yield In A Genetically Diverse Miscanthus Sinensis Germplasm Panel Phenotyped At Five Locations In Asia And North America, Lindsay V. Clark, Maria S. Dwiyanti, Kossonou G. Anzoua, Joe E. Brummer, Bimal Kumar Ghimire, Katarzyna Glowacka, Megan Hall, Kweon Heo, Xiaoli Jin, Alexander E. Lipka, Junhua Peng, Toshihiko Yamada, Ji Hye Yoo, Chang Yeon Yu, Hua Zhao, Stephen P. Long, Erik J. Sacks

Biochemistry -- Faculty Publications

To improve the efficiency of breeding of Miscanthus for biomass yield, there is a need to develop genomics‐assisted selection for this long‐lived perennial crop by relating genotype to phenotype and breeding value across a broad range of environments. We present the first genome‐wide association (GWA) and genomic prediction study of Miscanthus that utilizes multilocation phenotypic data. A panel of 568 Miscanthus sinensis accessions was genotyped with 46,177 single nucleotide polymorphisms (SNPs) and evaluated at one subtropical and five temperate locations over 3 years for biomass yield and 14 yield‐component traits. GWA and genomic prediction were ...


Biomass Yield In A Genetically Diverse Miscanthus Sinensis Germplasm Panel Evaluated At Five Locations Revealed Individuals With Exceptional Potential, Lindsay V. Clark, Maria S. Dwiyanti, Kossonou G. Anzoua, Joe E. Brummer, Bimal Kumar Ghimire, Katarzyna Glowacka, Megan Hall, Kweon Heo, Xiaoli Jin, Alexander E. Lipka, Junhua Peng, Toshihiko Yamada, Ji Hye Yoo, Chang Yeon Yu, Hua Zhao, Stephen P. Long, Erik J. Sacks Jan 2019

Biomass Yield In A Genetically Diverse Miscanthus Sinensis Germplasm Panel Evaluated At Five Locations Revealed Individuals With Exceptional Potential, Lindsay V. Clark, Maria S. Dwiyanti, Kossonou G. Anzoua, Joe E. Brummer, Bimal Kumar Ghimire, Katarzyna Glowacka, Megan Hall, Kweon Heo, Xiaoli Jin, Alexander E. Lipka, Junhua Peng, Toshihiko Yamada, Ji Hye Yoo, Chang Yeon Yu, Hua Zhao, Stephen P. Long, Erik J. Sacks

Biochemistry -- Faculty Publications

To breed improved biomass cultivars of Miscanthus ×giganteus, it will be necessary to select the highest‐yielding and best‐adapted genotypes of its parental species, Miscanthus sinensis and Miscanthus sacchariflorus. We phenotyped a diverse clonally propagated panel of 569 M. sinensis and nine natural diploid M. ×giganteus at one subtropical (Zhuji, China) and five temperate locations (Sapporo, Japan; Leamington, Ontario, Canada; Fort Collins, CO; Urbana, IL; and Chuncheon, Korea) for dry biomass yield and 14 yield‐component traits, in trials grown for 3 years. Notably, dry biomass yield of four Miscanthus accessions exceeded 80 Mg/ha in Zhuji, China, approaching ...


Visualizing The Invisible: A Guide To Designing, Printing, And Incorporating Dynamic 3d Molecular Models To Teach Structure–Function Relationships, Michelle Howell, Karin Van Dijk, Christine S. Booth, Tomáš Helikar, Brain A. Couch, Rebecca Roston Jan 2019

Visualizing The Invisible: A Guide To Designing, Printing, And Incorporating Dynamic 3d Molecular Models To Teach Structure–Function Relationships, Michelle Howell, Karin Van Dijk, Christine S. Booth, Tomáš Helikar, Brain A. Couch, Rebecca Roston

Biochemistry -- Faculty Publications

Understanding the intricate relationship between macromolecular structure and function represents a central goal of undergraduate biology education (1–3). In teaching complex three-dimensional (3D) concepts, instructors typically depend on static two-dimensional (2D) textbook images or computer-based visualization software, which can lead to unintended misconceptions (4–6). While chemical and molecular kits exist, these models cannot handle the size and detail of macromolecules. Consequently, students may graduate in the life sciences without understanding how structure underlies function or acquiring skills to translate between 2D and 3D molecular models (5, 7). Building on recent technological advances, 3D printing (3DP) potentiates an era ...


Autophagy In Adipocyte Browning: Emerging Drug Target For Intervention In Obesity, Seung-Hyun Ro, Yura Jang, Jiyoung Bae, Isaac M. Kim, Cameron Schaecher, Zachery D. Shomo Jan 2019

Autophagy In Adipocyte Browning: Emerging Drug Target For Intervention In Obesity, Seung-Hyun Ro, Yura Jang, Jiyoung Bae, Isaac M. Kim, Cameron Schaecher, Zachery D. Shomo

Biochemistry -- Faculty Publications

Autophagy, lipophagy, and mitophagy are considered to be the major recycling processes for protein aggregates, excess fat, and damaged mitochondria in adipose tissues in response to nutrient status-associated stress, oxidative stress, and genotoxic stress in the human body. Obesity with increased body weight is often associated with white adipose tissue (WAT) hypertrophy and hyperplasia and/or beige/brown adipose tissue atrophy and aplasia, which significantly contribute to the imbalance in lipid metabolism, adipocytokine secretion, free fatty acid release, and mitochondria function. In recent studies, hyperactive autophagy in WAT was observed in obese and diabetic patients, and inhibition of adipose autophagy ...


Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink Jan 2019

Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink

Biochemistry -- Faculty Publications

Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake ...


Student Understanding Of Dna Structure–Function Relationships Improves From Using 3d Learning Modules With Dynamic 3d Printed Models, Michelle E. Howell, Christine S. Booth, Sharmin M. Sikich, Tomáš Helikar, Rebecca Roston, Brain A. Couch, Karin Van Dijk Jan 2019

Student Understanding Of Dna Structure–Function Relationships Improves From Using 3d Learning Modules With Dynamic 3d Printed Models, Michelle E. Howell, Christine S. Booth, Sharmin M. Sikich, Tomáš Helikar, Rebecca Roston, Brain A. Couch, Karin Van Dijk

Biochemistry -- Faculty Publications

Understanding the relationship between molecular structure and function represents an important goal of undergraduate life sciences. Although evidence suggests that handling physical models supports gains in student understanding of structure–function relationships, such models have not been widely implemented in biochemistry classrooms. Three-dimensional (3D) printing represents an emerging cost-effective means of producing molecular models to help students investigate structure–function concepts. We developed three interactive learning modules with dynamic 3D printed models to help biochemistry students visualize biomolecular structures and address particular misconceptions. These modules targeted specific learning objectives related to DNA and RNA structure, transcription factor-DNA interactions, and DNA ...


Downregulation Of A Cyp74 Rubber Particle Protein Increases Natural Rubber Production In Parthenium Argentatum, Dante F. Placido, Niu Dong, Chen Dong, Von Mark V. Cruz, David A. Dierig, Rebecca E. Cahoon, Byung-Guk Kang, Trinh Huynh, Maureen Whalen, Grisel Ponciano, Colleen Mcmahan Jan 2019

Downregulation Of A Cyp74 Rubber Particle Protein Increases Natural Rubber Production In Parthenium Argentatum, Dante F. Placido, Niu Dong, Chen Dong, Von Mark V. Cruz, David A. Dierig, Rebecca E. Cahoon, Byung-Guk Kang, Trinh Huynh, Maureen Whalen, Grisel Ponciano, Colleen Mcmahan

Biochemistry -- Faculty Publications

We report functional genomics studies of a CYP74 rubber particle protein from Parthenium argentatum, commonly called guayule. Previously identified as an allene oxide synthase (AOS), this CYP74 constitutes the most abundant protein found in guayule rubber particles. Transgenic guayule lines with AOS gene expression down-regulated by RNAi (AOSi) exhibited strong phenotypes that included agricultural traits conducive to enhancing rubber yield. AOSi lines had higher leaf and stem biomass, thicker stembark tissues, increased stem branching and improved net photosynthetic rate. Importantly, the rubber content was significantly increased in AOSi lines compared to the wild-type (WT), vector control and AOS overexpressing (AOSoe ...


Ligand Binding And Signaling Of Hare/Stabilin-2, Edward N. Harris, Fatima Cabral Jan 2019

Ligand Binding And Signaling Of Hare/Stabilin-2, Edward N. Harris, Fatima Cabral

Biochemistry -- Faculty Publications

The Stabilin receptors are a two-member family in the type H class of scavenger receptors. These dynamic receptors bind and internalize multiple ligands from the cell surface for the purpose of clearing extracellular material including some synthetic drugs and for sensing the external environment of the cell. Stabilin-1 was the first receptor to be cloned, though the biological activity of Hyaluronic Acid Receptor for Endocytosis (HARE)/Stabilin-2 was observed about 10 years prior to the cloning of Stabilin-1. Stabilin-1 has a more diverse expression profile among the tissues than HARE/Stabilin-2. This review will focus on HARE/Stabilin-2 and its ...


Winter Hardiness Of Miscanthus (Iii): Genome‐Wide Association And Genomic Prediction For Overwintering Ability In Miscanthus Sinensis, Hongxu Dong, Lindsay V. Clark, Alexander E. Lipka, Joe E. Brummer, Katarzyna Glowacka, Megan C. Hall, Kweon Heo, Xiaoli Jin, Junhua Peng, Toshihiko Yamada, Bimal Kumar Ghimire, Ji Hye Yoo, Chang Yeon Yu, Hua Zhao, Stephen P. Long, Erik J. Sacks Jan 2019

Winter Hardiness Of Miscanthus (Iii): Genome‐Wide Association And Genomic Prediction For Overwintering Ability In Miscanthus Sinensis, Hongxu Dong, Lindsay V. Clark, Alexander E. Lipka, Joe E. Brummer, Katarzyna Glowacka, Megan C. Hall, Kweon Heo, Xiaoli Jin, Junhua Peng, Toshihiko Yamada, Bimal Kumar Ghimire, Ji Hye Yoo, Chang Yeon Yu, Hua Zhao, Stephen P. Long, Erik J. Sacks

Biochemistry -- Faculty Publications

Overwintering ability is an important selection criterion for Miscanthus breeding in temperate regions. Insufficient overwintering ability of the currently leading Miscanthus biomass cultivar, M. ×giganteus (M×g) ‘1993–1780’, in regions where average annual minimum temperatures are −26.1°C (USDA hardiness zone 5) or lower poses a pressing need to develop new cultivars with superior cold tolerance. To facilitate breeding of Miscanthus, this study characterized phenotypic and genetic variation of overwintering ability in an M. sinensis germplasm panel consisting of 564 accessions, evaluated in field trials at three locations in North America and two in Asia. Genome‐wide association ...


Solvent Stable Microbial Lipases: Current Understanding And Biotechnological Applications, Barry Ryan, Priyanka Priyanka, Yeqi Tan, Gemma K Kinsella, Gary T. Henehan Dec 2018

Solvent Stable Microbial Lipases: Current Understanding And Biotechnological Applications, Barry Ryan, Priyanka Priyanka, Yeqi Tan, Gemma K Kinsella, Gary T. Henehan

Articles

Objective: This review examines on our current understanding of microbial lipase solvent tolerance, with a specific focus on the molecular strategies employed to improve lipase stability in a non-aqueous environment.

Results: It provides an overview of known solvent tolerant lipases and of approaches to improving solvent stability such as; enhancing stabilising interactions, modification of residue flexibility and surface charge alteration. It shows that judicious selection of lipase source supplemented by appropriate enzyme stabilisation, can lead to a wide application spectrum for lipases.

Conclusion: Organic solvent stable lipases are, and will continue to be, versatile and adaptable biocatalytic workhorses commonly employed ...


Distribution Of Dengue And Zika Virus Igg Immunoglobulin, Madison Smith, Awadalkareem Adam, Anuja Mathew Dec 2018

Distribution Of Dengue And Zika Virus Igg Immunoglobulin, Madison Smith, Awadalkareem Adam, Anuja Mathew

Senior Honors Projects

Introduction. Dengue Virus (DENV) and Zika Virus (ZIKV) are viruses that belong to the Flavivirus family. They are transmitted by the Aedes aegypti species of mosquitoes. Infection with DENV can result in no symptoms, mild symptoms which include fever, rash, and headache (dengue fever) or more severe symptoms which include hemorrhage, dengue hemorrhagic fever (DHF) and shock, dengue shock syndrome (DSS). ZIKV, until recently caused mild disease but an outbreak in Brazil was associated with fetal complications such as microcephaly or Guillain-Barré syndrome in adults. Due to the similarity between ZIKV and DENV, antibodies (Abs) generated in humans to these ...


The Goldilocks Approach: A Review Of Employing Design Of Experiments In Prokaryotic Recombinant Protein Production, Barry Ryan, Albert Uhoraningoga, Gemma K. Kinsella, Gary T. .. Henehan Dec 2018

The Goldilocks Approach: A Review Of Employing Design Of Experiments In Prokaryotic Recombinant Protein Production, Barry Ryan, Albert Uhoraningoga, Gemma K. Kinsella, Gary T. .. Henehan

Articles

The production of high yields of soluble recombinant protein is one of the main objectives of protein biotechnology. Several factors, such as expression system, vector, host, media composition and induction conditions can influence recombinant protein yield. Identifying the most important factors for optimum protein expression may involve significant investment of time and considerable cost. To address this problem statistical models, such as Design of Experiments (DoE), have been used to optimise recombinant protein production. This review explores the application of DoE in the production of recombinant proteins, focusing on prokaryotic expression systems with a specific emphasis on media composition and ...


Mouse Genome-Wide Association Studies And Systems Genetics Uncover The Genetic Architecture Associated With Hepatic Pharmacokinetic And Pharmacodynamic Properties Of A Constrained Ethyl Antisense Oligonucleotide Targeting Malat1, Elaine Pirie, Shayoni Ray, Calvin Pan, Wuxia Fu, Andrew F. Powers, Danielle Polikoff, Colton M. Miller, Katrina M. Kudrna, Edward N. Harris, Aldons J. Lusis, Rosanne M. Crooke, Richard G. Lee Oct 2018

Mouse Genome-Wide Association Studies And Systems Genetics Uncover The Genetic Architecture Associated With Hepatic Pharmacokinetic And Pharmacodynamic Properties Of A Constrained Ethyl Antisense Oligonucleotide Targeting Malat1, Elaine Pirie, Shayoni Ray, Calvin Pan, Wuxia Fu, Andrew F. Powers, Danielle Polikoff, Colton M. Miller, Katrina M. Kudrna, Edward N. Harris, Aldons J. Lusis, Rosanne M. Crooke, Richard G. Lee

Biochemistry -- Faculty Publications

Antisense oligonucleotides (ASOs) have demonstrated variation of efficacy in patient populations. This has prompted our investigation into the contribution of genetic architecture to ASO pharmacokinetics (PK) and pharmacodynamics (PD). Genome wide association (GWA) and transcriptomic analysis in a hybrid mouse diversity panel (HMDP) were used to identify and validate novel genes involved in the uptake and efficacy of a single dose of a Malat1 constrained ethyl (cEt) modified ASO. The GWA of the HMDP identified two significant associations on chromosomes 4 and 10 with hepatic Malat1 ASO concentrations. Stabilin 2 (Stab2) and vesicle associated membrane protein 3 (Vamp3) were identified ...


A Review On Bioconversion Of Agro-Industrial Wastes To Industrially Important Enzymes, Rajeev Ravindran, Shady S. Hassan, Gwilym A. Williams, Amit K, Jaiswal Oct 2018

A Review On Bioconversion Of Agro-Industrial Wastes To Industrially Important Enzymes, Rajeev Ravindran, Shady S. Hassan, Gwilym A. Williams, Amit K, Jaiswal

Articles

Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical–chemical nature of many lignocellulosic substrates ...


Adapting Cell-Free Protein Synthesis As A Platform Technology For Education, Grace W. Chu, Max Z. Levine, Nicole E. Gregorio, Javin P. Oza Oct 2018

Adapting Cell-Free Protein Synthesis As A Platform Technology For Education, Grace W. Chu, Max Z. Levine, Nicole E. Gregorio, Javin P. Oza

STAR (STEM Teacher and Researcher) Presentations

Cell-free protein synthesis (CFPS) has emerged as an enabling biotechnology for research and biomanufacturing as it allows for the production of protein without the need for a living cell. Applications of CFPS include the construction of libraries for functional genomics and structural biology, the production of personalized medicine, and the expression of virus-like particles. The absence of a cell wall provides an open platform for direct manipulation of the reaction conditions and biological machinery. This project focuses on adapting the CFPS biotechnology to the classroom, making a hands-on bioengineering approach to learning protein synthesis accessible to students grades K-16 through ...


Theobromine And Related Methylxanthines As Inhibitors Of Primary Amine Oxidase, Padraig Shanahan, Jeffrey O’Sullivan, Keith Tipton, Gemma Kinsella, Barry Ryan, Gary Henehan Oct 2018

Theobromine And Related Methylxanthines As Inhibitors Of Primary Amine Oxidase, Padraig Shanahan, Jeffrey O’Sullivan, Keith Tipton, Gemma Kinsella, Barry Ryan, Gary Henehan

Articles

Methylxanthines are the most widely consumed drugs in the world and evidence of their health benefits has been growing in recent years. Primary Amine Oxidase (PrAO) has been recognised as a therapeutic target for amelioration of inflammatory, vascular and neurodegenerative diseases. Previous work in our laboratories showed that caffeine inhibited Bovine PrAO with a Ki of 1.0mM using benzylamine as substrate.

This study aimed to extend our previous work and explore the possibility that related methylxanthines might influence PrAO activity. While paraxanthine, theophylline and 7-methylxanthine had little effect on PrAO, theobromine was a noncompetitive inhibitor with a Ki of ...


Induction Of Oil Accumulation By Heat Stress Is Metabolically Distinct From N Stress In The Green Microalgae Coccomyxa Subellipsoidea C169, James W. Allen, Rahul Tevatia, Yaşar Demirel, Concetta C. Dirusso, Paul N. Black Sep 2018

Induction Of Oil Accumulation By Heat Stress Is Metabolically Distinct From N Stress In The Green Microalgae Coccomyxa Subellipsoidea C169, James W. Allen, Rahul Tevatia, Yaşar Demirel, Concetta C. Dirusso, Paul N. Black

Biochemistry -- Faculty Publications

Algae are often promoted as feedstock organisms to produce a sustainable petroleum fossil fuel alternative. However, to induce lipid accumulation most often requires a severe stress that is difficult to induce in large batch cultures. The objective of this study is to analyze and mathematically model heat stress on growth, chlorophyll content, triacylglyceride, and starch synthesis in algae. We initially screened 30 algal species for the most pronounced induction of lipid droplets from heat stress using confocal microscopy and mass spectroscopy techniques. One species, Coccomyxa subellipsoidea C169, was selected and subjected to further biochemical analyses using a jacketed bioreactor amended ...


Identification Of Biologically Essential Nodes Via Determinative Power In Logical Models Of Cellular Processes, Trevor Pentzien, Bhanwar L. Puniya, Tomas Helikar, Mihaela T. Matache Aug 2018

Identification Of Biologically Essential Nodes Via Determinative Power In Logical Models Of Cellular Processes, Trevor Pentzien, Bhanwar L. Puniya, Tomas Helikar, Mihaela T. Matache

Biochemistry -- Faculty Publications

A variety of biological networks can bemodeled as logical or Boolean networks. However, a simplification of the reality to binary states of the nodes does not ease the difficulty of analyzing the dynamics of large, complex networks, such as signal transduction networks, due to the exponential dependence of the state space on the number of nodes. This paper considers a recently introduced method for finding a fairly small subnetwork, representing a collection of nodes that determine the states of most other nodes with a reasonable level of entropy. The subnetwork contains the most determinative nodes that yield the highest information ...


Directly Light-Regulated Binding Of Rgs-Lov Photoreceptors To Anionic Membrane Phospholipids, Spencer T. Glantz, Erin E. Berlew, Zaynab Jaber, Benjamin S. Schuster, Kevin H. Gardner, Brian Y. Chow Jul 2018

Directly Light-Regulated Binding Of Rgs-Lov Photoreceptors To Anionic Membrane Phospholipids, Spencer T. Glantz, Erin E. Berlew, Zaynab Jaber, Benjamin S. Schuster, Kevin H. Gardner, Brian Y. Chow

Publications and Research

We report natural light–oxygen–voltage (LOV) photoreceptors with a blue light-switched, high-affinity (KD ∼ 10−7 M), and direct electrostatic interaction with anionic phospholipids. Membrane localization of one such photoreceptor, BcLOV4 from Botrytis cinerea, is directly coupled to its flavin photocycle, and is mediated by a polybasic amphipathic helixinthelinker regionbetween the LOV sensor and its C-terminal domain of unknown function (DUF), as revealed through a combination of bioinformatics, computational protein modeling, structure–function studies, and optogenetic assays in yeast and mammalian cell line expression systems. In model systems, BcLOV4 rapidly translocates from the cytosol to plasma membrane (∼1 second). The ...


Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston Jun 2018

Lipid Transport Required To Make Lipids Of Photosynthetic Membranes, Evan Labrant, Allison C. Barnes, Rebecca Roston

Biochemistry -- Faculty Publications

Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane ...


Reversible Heparin Molecules And Methods Of Making And Using The Same, Jian Liu, Yongmei Xu, Robert J. Linhardt, Edward Harris Apr 2018

Reversible Heparin Molecules And Methods Of Making And Using The Same, Jian Liu, Yongmei Xu, Robert J. Linhardt, Edward Harris

Biochemistry -- Faculty Publications

Methods and systems for synthesizing heparin compounds are provided . The chemoenzymatic synthesis of structurally homogeneous low molecular weight heparins that have a reversible anticoagulant activity is provided . Also disclosed are heparin compounds having anticoagulant activity , including a binding affinity to antithrombin and an anti - Xa activity , but no detectable anti - lla activity . Additionally , provided are synthetic , low - molecular weight heparin com pounds with reversible anticoagulant activity , where the anticoagulant activity is reversible by protamine.


Prediction Of Lncrna-Disease Associations Based On Inductive Matrix Completion, Chengqian Lu, Mengyun Yang, Feng Luo, Fang-Xiang Wu, Min Li, Yi Pan, Yaohang Li, Jianxin Wang Apr 2018

Prediction Of Lncrna-Disease Associations Based On Inductive Matrix Completion, Chengqian Lu, Mengyun Yang, Feng Luo, Fang-Xiang Wu, Min Li, Yi Pan, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play pivotal roles in various biological processes. Mutations and dysregulations of lncRNAs are implicated in miscellaneous human diseases. Predicting lncRNA–disease associations is beneficial to disease diagnosis as well as treatment. Although many computational methods have been developed, precisely identifying lncRNA–disease associations, especially for novel lncRNAs, remains challenging.

Results: In this study, we propose a method (named SIMCLDA) for predicting potential lncRNA– disease associations based on inductive matrix completion. We compute Gaussian interaction profile kernel of lncRNAs from known lncRNA–disease interactions and functional similarity of diseases based on disease ...


Intraperitoneal Nanotherapy For Metastatic Ovarian Cancer Based On Sirna-Mediated Suppression Of Dj-1 Protein Combined With A Low Dose Of Cisplatin, Canan Schumann, Stephanie Chan, Jess A. Miller, Yuliya Bortnyak, Katherine Carey, Alex Fedchyk, Leon Wong, Tetiana Korzun, Abraham S. Moses, Anna Lorenz, Delany Shea, Olena Taratula, Oleh Khalimonchuk, Oleh Taratula Apr 2018

Intraperitoneal Nanotherapy For Metastatic Ovarian Cancer Based On Sirna-Mediated Suppression Of Dj-1 Protein Combined With A Low Dose Of Cisplatin, Canan Schumann, Stephanie Chan, Jess A. Miller, Yuliya Bortnyak, Katherine Carey, Alex Fedchyk, Leon Wong, Tetiana Korzun, Abraham S. Moses, Anna Lorenz, Delany Shea, Olena Taratula, Oleh Khalimonchuk, Oleh Taratula

Biochemistry -- Faculty Publications

Herein, we report an efficient combinatorial therapy for metastatic ovarian cancer based on siRNA-mediated suppression of DJ-1 protein combined with a low dose of cisplatin. DJ-1 protein modulates, either directly or indirectly, different oncogenic pathways that support and promote survival, growth, and invasion of ovarian cancer cells. To evaluate the potential of this novel therapy, we have engineered a cancer-targeted nanoplatform and validated that DJ-1 siRNA delivered by this nanoplatform after intraperitoneal injection efficiently downregulates the DJ-1 protein in metastatic ovarian cancer tumors and ascites. In vivo experiments revealed that DJ-1 siRNA monotherapy outperformed cisplatin alone by inhibiting tumor growth ...


Structural Determinants For The Interactions Of Chemically Modified Nucleic Acids With The Stabilin‑2 Clearance Receptor, Hans Gaus, Colton M. Miller, Punit P. Seth, Edward N. Harris Mar 2018

Structural Determinants For The Interactions Of Chemically Modified Nucleic Acids With The Stabilin‑2 Clearance Receptor, Hans Gaus, Colton M. Miller, Punit P. Seth, Edward N. Harris

Biochemistry -- Faculty Publications

The Stabilin receptors are systemic clearance receptors for some classes of chemically modified nucleic acid therapeutics. In this study, the recombinant human secreted ecto-domain of the small isoform of Stabilin-2 (s190) was purified from cell culture and evaluated for direct binding with a multitude of antisense oligonucleotides (ASOs) using a fluorescence polarizationbased assay. The tested ASOs varied in their backbone composition, modification of the ribose 2′ position, overall length of the oligo, and sequence of the nucleotide bases. A fully phosphorothioate (PS) ASO with a 5−10−5 pattern of flanking 2′-O-methoxyethyl modifications was then used to test ...


Two Distinct Domains Contribute To The Substrate Acyl Chain Length Selectivity Of Plant Acyl-Acp Thioesterase, Fuyuan Jing, Le Zhao, Marna D. Yandeau-Nelson, Basil J. Nikolau Feb 2018

Two Distinct Domains Contribute To The Substrate Acyl Chain Length Selectivity Of Plant Acyl-Acp Thioesterase, Fuyuan Jing, Le Zhao, Marna D. Yandeau-Nelson, Basil J. Nikolau

Genetics, Development and Cell Biology Publications

The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate’s acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of ...


Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit Jan 2018

Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit

Bioelectrics Publications

Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1 kHz and 20 MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner ...