Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Switchgrass Extractives Have Potential As A Value-Added Antimicrobial Against Plant Pathogens And Foodborne Pathogens, Alexander Ian Bruce Dec 2016

Switchgrass Extractives Have Potential As A Value-Added Antimicrobial Against Plant Pathogens And Foodborne Pathogens, Alexander Ian Bruce

Masters Theses

Panicum virgatum (switchgrass), a perennial grass native to North America, is a leading biomass feedstock candidate for the manufacture of cellulosic ethanol. Switchgrass is considered a viable option for biofuel production due to its cheap production cost and ability to grow on marginal land. Biofuel derived from switchgrass has been shown to be very energy efficient, producing 540% more renewable energy versus nonrenewable energy expended. Switchgrass-derived biofuel is also estimated to have greenhouse gas emissions that are 94% lower than emissions from gasoline (Schmer et al 2008). Biofuels are created through biochemical processes that utilize various enzymes and microorganisms for ...


Rapid Molecular Detection And Population Genetics Of Pityophthorus Juglandis, A Vector Of Thousand Cankers Disease In Juglans Spp., Emel Oren Dec 2016

Rapid Molecular Detection And Population Genetics Of Pityophthorus Juglandis, A Vector Of Thousand Cankers Disease In Juglans Spp., Emel Oren

Masters Theses

Thousand Cankers Disease (TCD) is a disease complex involving the fungal pathogen Geosmithia morbida, an insect vector Pityophthorus juglandis, and the hosts, Juglans spp. and Pterocarya spp. Signs and symptoms of TCD include crown thinning due to branch dieback, yellowing and wilting of the leaves, appearance of epicormic shoots, numerous entrance/exit holes, gallery formation by P. juglandis, and the development of small, dark brown cankers underneath the bark. TCD originally described from western U.S., has now expanded to eastern U.S. and northwestern Italy. The disease complex is often difficult to diagnose due to the absence of symptoms ...


Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare Jan 2015

Promoting Extracellular Matrix Crosslinking In Synthetic Hydrogels, Marcos M. Manganare

Masters Theses

The extracellular matrix (ECM) provides mechanical and biochemical support to tissues and cells. It is crucial for cell attachment, differentiation, and migration, as well as for ailment-associated processes such as angiogenesis, metastases and cancer development. An approach to study these phenomena is through emulation of the ECM by synthetic gels constructed of natural polymers, such as collagen and fibronectin, or simple but tunable materials such as poly(ethylene glycol) (PEG) crosslinked with short peptide sequences susceptible to digestion by metalloproteases and cell-binding domains. Our lab uses PEG gels to study cell behavior in three dimensions (3D). Although this system fosters ...


Rnai Mediated Silencing Of Cell Wall Invertase Inhibitors To Increase Sucrose Allocation To Sink Tissues In Transgenic Camelina Sativa Engineered With A Carbon Concentrating Mechanism, Joshua Zuber Jan 2015

Rnai Mediated Silencing Of Cell Wall Invertase Inhibitors To Increase Sucrose Allocation To Sink Tissues In Transgenic Camelina Sativa Engineered With A Carbon Concentrating Mechanism, Joshua Zuber

Masters Theses

Plant invertases are a class of proteins that have enzymatic function in cleaving sucrose to fructose and glucose. Cell wall invertase, located on the exterior of the cell wall of plant cells, plays a key role in the unloading of sucrose from the apoplast to the sink tissues. Cell wall invertase interacts with an inhibitor, cell wall invertase inhibitor, post-transcriptionally to regulate its activity. The inhibitor is constitutively expressed in pollen development, early developing seeds, and senescing leaves: indicative of sucrose allocation being a limiting factor at these stages of development. We introduced algal bicarbonate transporters LCIA/CCP1 to Camelina ...


Value-Added Lignin Based Carbon Fiber From Organosolv Fractionation Of Poplar And Switchgrass, Andreas Attwenger May 2014

Value-Added Lignin Based Carbon Fiber From Organosolv Fractionation Of Poplar And Switchgrass, Andreas Attwenger

Masters Theses

Carbon fiber has unique properties that include high strength, low density and excellent chemical and thermal resistance. However, they have a low level of utilization because of their high price; typically around $30/kg for an entry level polyacrylonitrile (PAN) based carbon fiber. Low-cost carbon fibers derived from lignin are currently being investigated at the University of Tennessee, because using lignin as a precursor could significantly reduce production costs. Lignin obtained from the pulp and paper and the emerging biofuel industries have the potential to be used for carbon fiber production, however, they are typically unsuitable because of the high ...


Engineering Camelina Sativa For Biofuel Production Via Increasing Oil Yield And Tolerance To Abiotic Stresses, Kenny Ablordeppey Jan 2014

Engineering Camelina Sativa For Biofuel Production Via Increasing Oil Yield And Tolerance To Abiotic Stresses, Kenny Ablordeppey

Masters Theses

In an effort to engineer Camelina sativa for enhanced oil yield and tolerance to abiotic stresses, we have cloned and overexpressed Camelina γ-Glutamyl Cyclotransferase (GGCT2;1); a gene involved in oxidative stress tolerance via glutathione homeostasis and Wrinkled 1; a transcription factor that regulates genes involved in fatty acid biosynthesis to increase triacylglycerol (TAG) accumulation in seeds. The GGCT gene family in Camelina consists of three genes-GGCT1, GGCT2;1 and GGCT2;2. Camelina GGCT genes showed differential expression under oxidative stress caused as a result of exposure to various abiotic stresses. The GGCT2;1 gene, which showed strong up-regulation ...


Bioconfinement Of A Putatively Sterile Nicotiana Hybrid And Development Of Tools For Assessing Gene Flow, John Hollis Rice Aug 2013

Bioconfinement Of A Putatively Sterile Nicotiana Hybrid And Development Of Tools For Assessing Gene Flow, John Hollis Rice

Masters Theses

Production of transgenic crops in open field environments is an ongoing concern of due to the potential for gene flow. New transgenic crops, such as plant-made-pharmaceuticals may generate additional concerns about effects of adventitious transgenes. Use of a bioconfinement strategy may alleviate any consequences by preventing gene flow. The following chapters discuss previous and current research on gene flow, testing of a Nicotiana hybrid system for bioconfinement efficiency, and development of methods for transgene detection. The candidate ‘platform plant’ that was tested is a Nicotiana hybrid (Nicotiana tabacum ‘TN 90’ × Nicotiana glauca) previously identified to be sexually sterile. To quantify ...


Preferential Flow And Colloids: Their Influence On The Transport Of Phosphorus, Tara Johanna Garrett Aug 2005

Preferential Flow And Colloids: Their Influence On The Transport Of Phosphorus, Tara Johanna Garrett

Masters Theses

Although strongly adsorbing ions are relatively immobile within soil, ion transport can be enhanced by preferential flow and by adsorption of ions to mobile colloids. The primary objective of this research was to determine the influence of preferential flow paths on the transportation of phosphorus (P) through a soil profile. Secondary objectives were to determine the effect of fertilizer type (inorganic vs. organic) and colloids on the transport of P.

Eight soil monoliths with a diameter of 0.3 m and a length of 0.75 m were collected from the Water Quality field site at the Ames Plantation. Four ...