Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan Jan 2018

Biosynthetic Mechanism Of The Antibiotic Capuramycin, Erfu Yan

Theses and Dissertations--Pharmacy

A-102395 is a member of the capuramycin family of antibiotics which was isolated from the culture broth of Amycolatopsis sp. SANK 60206. A-102339 is structurally classified as a nucleoside antibiotic, which like all members of the capuramycin family, inhibits bacterial MraY (translocase I) with IC50 of 11 nM which is the lowest among the capuramycin family. A semisynthetic derivative of capuramycin is currently in clinical trials as an antituberculosis antibiotic, suggesting high potential for using A-102395 as a starting point for new antibiotic discovery. In contrast to other capuramycins, A-102395 has a unique arylamine-containing polyamide side chain. The biosynthetic ...


The Role Of Alternative Polyadenylation Mediated By Cpsf30 In Arabidopsis Thaliana, Guijie Hao Jan 2017

The Role Of Alternative Polyadenylation Mediated By Cpsf30 In Arabidopsis Thaliana, Guijie Hao

Theses and Dissertations--Plant and Soil Sciences

Drought stress is considered one of the most devastating abiotic stress factors that limit crop productivity for modern agriculture worldwide. There is a large range of physiological and biochemical responses induced by drought stress. The responses range from physiological and biochemical to regulation at transcription and posttranscriptional levels. Post-transcription, the products encoded by eukaryotic genes must undergo a series of modifications to become a mature mRNA. Polyadenylation is an important one in terms of regulation. Polyadenylation impacts gene expression through determining the coding and regulation potential of the mRNA, especially when different mRNAs from the same gene may be polyadenylated ...


Transcriptomic Analyses Of Cathatranthus Roseus Hairy Roots Overexpressing Crmyc2 And Orca3 And Roles Of Cross-Family Transcription Factor Interaction In Terpenoid Indole Alkaloid Biosynthesis, Xueyi Sui Jan 2017

Transcriptomic Analyses Of Cathatranthus Roseus Hairy Roots Overexpressing Crmyc2 And Orca3 And Roles Of Cross-Family Transcription Factor Interaction In Terpenoid Indole Alkaloid Biosynthesis, Xueyi Sui

Theses and Dissertations--Plant and Soil Sciences

Catharanthus roseus (Madagascar periwinkle), is a well-known medicinal plant that produces a vast array of terpenoid indole alkaloids (TIAs), including two anticancer compounds vinblastine and vincristine. Industrial scale production of TIAs is hampered by the difficulties of total chemical synthesis of these compounds and the fragmented knowledge on TIA pathway. Transcriptional regulation of the TIA biosynthetic pathway has not been thoroughly investigated in Catharanthus and only a few structural genes have been identified as the targets of two master regulators: the basic helix-loop-helix (bHLH) transcription factor (TF) CrMYC2 and APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF), ORCA3. Next generation sequencing (NGS ...


Molecular And Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions, Mohamed H. El-Shetehy Jan 2016

Molecular And Biochemical Signaling Underlying Arabidopsis-Bacterial/Virus/Fungal Interactions, Mohamed H. El-Shetehy

Theses and Dissertations--Plant Pathology

Systemic acquired resistance (SAR) is a form of inducible defense response triggered upon localized infection that confers broad-spectrum disease resistance against secondary infections. Several factors are known to regulate SAR and these include phenolic phytohormone salicylic acid (SA), phosphorylated sugar glycerol-3-phosphate (G3P), and dicarboxylic acid azelaic acid (AzA). This study evaluated a role for free radicals nitric oxide (NO) and reactive oxygen species (ROS) in SAR. Normal accumulation of both NO and ROS was required for normal SAR and mutations preventing NO/ROS accumulation and/or biosynthesis compromised SAR. A role for NO and ROS was further established using pharmacological ...


Towards Elucidation Of The Mechanism Of Biological Nanomotors, Zhengyi Zhao Jan 2016

Towards Elucidation Of The Mechanism Of Biological Nanomotors, Zhengyi Zhao

Theses and Dissertations--Pharmacy

Biological functions such as cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging, and cell entry all involve biomotor-driven DNA translocation. In the past, the ubiquitous biological nanomotors were classified into two categories: linear and rotation motors. In 2013, we discovered a third type of biomotor, revolving motor without rotation. The revolving motion is further found to be widespread among many biological systems. In addition, the detailed sequential action mechanism of the ATPase ring in the phi29 dsDNA packaging motor has been elucidated: ATP binding induces a conformational entropy alternation of ATPase ...


Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell Jan 2014

Understanding The Chemical Gymnastics Of Enzyme-Catalyzed 1’-1 And 1’-3 Triterpene Linkages, Stephen A. Bell

Theses and Dissertations--Plant and Soil Sciences

Squalene synthase (SS) is an essential enzyme in eukaryotic systems responsible for an important branch point in isoprenoid metabolism that leads to sterol formation. The mechanistic complexity of SS has made it a difficult enzyme to study. The green alga Botryococcus braunii race B possesses several squalene synthase-like (SSL) enzymes that afford a unique opportunity to study the complex mechanism of triterpene biosynthesis. SSL-1 catalyzes presqualene diphosphate (PSPP) formation, which can either be converted to squalene by SSL-2 or botryococcene by SSL-3. A rationally designed mutant study of B. braunii squalene synthase (BbSS) and SSL-3 was conducted to understand structure-function ...


Influence Of Media Composition On The Growth Rate Of Chlorella Vulgaris And Scenedesmus Acutus Utilized For Co2 Mitigation, Czarena L. Crofcheck, Xinyi E, Aubrey Shea, Michael D. Montross, Mark Crocker, Rodney Andrews Jun 2013

Influence Of Media Composition On The Growth Rate Of Chlorella Vulgaris And Scenedesmus Acutus Utilized For Co2 Mitigation, Czarena L. Crofcheck, Xinyi E, Aubrey Shea, Michael D. Montross, Mark Crocker, Rodney Andrews

Biosystems and Agricultural Engineering Faculty Publications

Atmospheric carbon dioxide levels have increased since the industrial revolution due to increasing combustion of fossil fuels. One possible CO2 mitigation strategy is the use of microalgae for mitigation of CO2. This paper focuses on the influence of media composition on the growth rate of two microalgae strains, Chlorella vulgaris and Scenedesmus actus. A KNO3 based medium was found to work better for Chlorella, while a urea based equivalent worked better for Scenedesmus. The urea based media investigated here resulted in growth similar to that found with previously reported KNO3 based media. This should result in ...


Overexpression/Silencing Of Selected Soybean Genes Alters Resistance To Pathogens, Mohamed H. El-Habbak Jan 2013

Overexpression/Silencing Of Selected Soybean Genes Alters Resistance To Pathogens, Mohamed H. El-Habbak

Theses and Dissertations--Plant Pathology

Plant diseases remain a major obstruction to meeting the world’s increased demand for soybean oil and protein. Reducing the losses caused by diseases in order to improve crop production is a high priority for agricultural research. The need for novel strategies for plant disease control cannot be overstated. In the present study, selected defense-related genes were silenced and/or overexpressed in soybean using a virus-based vector and the resultant plants were tested for their responses to pathogens. The first part of the study focused on Rps1k (Resistance to Phytophthora sojae) gene. The two conserved domains encoding ‘P-Loop NTPase’ and ...


Engineering Novel Terpene Production Platforms In The Yeast Saccharomyces Cerevisiae, Xun Zhuang Jan 2013

Engineering Novel Terpene Production Platforms In The Yeast Saccharomyces Cerevisiae, Xun Zhuang

Theses and Dissertations--Plant and Soil Sciences

The chemical diversity and biological activities of terpene and terpenoids have served in the development of new flavors, fragrances, medicines and pesticides. While terpenes are made predominantly by plants and microbes in small amounts and as components of complex mixtures, chemical synthesis of terpenes remains technically challenging, costly and inefficient. In this dissertation, methods to create new yeast lines possessing a dispensable mevalonate biosynthetic pathway wherein carbon flux can be diverted to build any chemical class of terpene product are described. The ability of this line to generate diterpenes was next investigated. Using a 5.5 L fed bath fermentation ...


Towards Elucidation Of A Viral Dna Packaging Motor, Chad T. Schwartz Jan 2013

Towards Elucidation Of A Viral Dna Packaging Motor, Chad T. Schwartz

Theses and Dissertations--Pharmacy

Previously, gp16, the ATPase protein of phi29 DNA packaging motor, was an enigma due to its tendency to form multiple oligomeric states. Recently we employed new methodologies to decipher both its stoichiometry and also the mechanism in which the protein functions to hydrolyze ATP and provide the driving force for DNA packaging. The oligomeric states were determined by biochemical and biophysical approaches. Contrary to many reported intriguing models of viral DNA packaging, it was found that phi29 DNA packaging motor permits the translocation of DNA unidirectionally and driven cooperatively by three rings of defined shape. The mechanism for the generation ...


Sex Determination In Beetles: Production Of All Male Progeny By Parental Rnai Knockdown Of Transformer, Jayendra Nath Shukla, Subba Reddy Palli Aug 2012

Sex Determination In Beetles: Production Of All Male Progeny By Parental Rnai Knockdown Of Transformer, Jayendra Nath Shukla, Subba Reddy Palli

Entomology Faculty Publications

Sex in insects is determined by a cascade of regulators ultimately controlling sex-specific splicing of a transcription factor, Doublesex (Dsx). We recently identified homolog of dsx in the red flour beetle, Tribolium castaneum (Tcdsx). Here, we report on the identification and characterization of a regulator of Tcdsx splicing in T. castaneum. Two male-specific and one female-specific isoforms of T. castaneum transformer (Tctra) were identified. RNA interference-aided knockdown of Tctra in pupa or adults caused a change in sex from females to males by diverting the splicing of Tcdsx pre-mRNA to male-specific isoform. All the pupa and adults developed from Tctra ...


Design, Synthesis, And Anticancer Activity Of Ruthenium Complexes, Brock S. Howerton Jan 2012

Design, Synthesis, And Anticancer Activity Of Ruthenium Complexes, Brock S. Howerton

Theses and Dissertations--Chemistry

Ruthenium complexes show promise as light activated photodynamic therapy (PDT) prodrugs. Strained octahedral complexes were synthesized that produce a cytotoxic species upon light activation. pUC19 DNA damage in vitro experiments were carried out to determine the type of damage observed. In vivo cell experiments were carried out on the non-small lung cancer A549 cell line to determine the phototherapeutic window of the synthesized complexes. One mechanism of drug resistance via elevated levels of glutathione was addressed through in vitro binding studies carried out with UV-Vis spectroscopy and in vivo glutathione titrations in the A549 cell line. Several complexes were shown ...