Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Prediction Of Lncrna-Disease Associations Based On Inductive Matrix Completion, Chengqian Lu, Mengyun Yang, Feng Luo, Fang-Xiang Wu, Min Li, Yi Pan, Yaohang Li, Jianxin Wang Apr 2018

Prediction Of Lncrna-Disease Associations Based On Inductive Matrix Completion, Chengqian Lu, Mengyun Yang, Feng Luo, Fang-Xiang Wu, Min Li, Yi Pan, Yaohang Li, Jianxin Wang

Computer Science Faculty Publications

Motivation: Accumulating evidences indicate that long non-coding RNAs (lncRNAs) play pivotal roles in various biological processes. Mutations and dysregulations of lncRNAs are implicated in miscellaneous human diseases. Predicting lncRNA–disease associations is beneficial to disease diagnosis as well as treatment. Although many computational methods have been developed, precisely identifying lncRNA–disease associations, especially for novel lncRNAs, remains challenging.

Results: In this study, we propose a method (named SIMCLDA) for predicting potential lncRNA– disease associations based on inductive matrix completion. We compute Gaussian interaction profile kernel of lncRNAs from known lncRNA–disease interactions and functional similarity of diseases based on disease ...


Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit Jan 2018

Dielectric Properties Of Isolated Adrenal Chromaffin Cells Determined By Microfluidic Impedance Spectroscopy, A. C. Sabuncu, M. Stacey, G. L. Graviso, N. Semenova, P. T. Vernier, N. Leblanc, I. Chatterjee, J. Zaklit

Bioelectrics Publications

Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1 kHz and 20 MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner ...


High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao Nov 2017

High-Throughput Single-Molecule Telomere Characterization, Jennifer Mccaffrey, Eleanor Young, Katy Lassahn, Justin Sibert, Steven Pastor, Harold Riethman, Ming Xiao

Medical Diagnostics & Translational Sciences Faculty Publications

We have developed a novel method that enables global subtelomere and haplotype-resolved analysis of telomere lengths at the single-molecule level. An in vitro CRISPR/Cas9 RNA-directed nickase system directs the specific labeling of human (TTAGGG) n DNA tracts in genomes that have also been barcoded using a separate nickase enzyme that recognizes a 7bp motif genome-wide. High-throughput imaging and analysis of large DNA single molecules from genomes labeled in this fashion using a nanochannel array system permits mapping through subtelomere repeat element (SRE) regions to unique chromosomal DNA while simultaneously measuring the (TTAGGG) n tract length at the end of ...


Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He Jan 2017

Comparing An Atomic Model Or Structure To A Corresponding Cryo-Electron Microscopy Image At The Central Axis Of A Helix, Stephanie Zeil, Julio Kovacs, Willy Wriggers, Jing He

Computer Science Faculty Publications

Three-dimensional density maps of biological specimens from cryo-electron microscopy (cryo-EM) can be interpreted in the form of atomic models that are modeled into the density, or they can be compared to known atomic structures. When the central axis of a helix is detectable in a cryo-EM density map, it is possible to quantify the agreement between this central axis and a central axis calculated from the atomic model or structure. We propose a novel arc-length association method to compare the two axes reliably. This method was applied to 79 helices in simulated density maps and six case studies using cryo-EM ...


Tissue Specific Microenvironments: A Key Tool For Tissue Engineering And Regenerative Medicine, Patrick C. Sachs, Peter A. Mollica, Robert D. Bruno Jan 2017

Tissue Specific Microenvironments: A Key Tool For Tissue Engineering And Regenerative Medicine, Patrick C. Sachs, Peter A. Mollica, Robert D. Bruno

Medical Diagnostics & Translational Sciences Faculty Publications

The accumulated evidence points to the microenvironment as the primary mediator of cellular fate determination. Comprised of parenchymal cells, stromal cells, structural extracellular matrix proteins, and signaling molecules, the microenvironment is a complex and synergistic edifice that varies tissue to tissue. Furthermore, it has become increasingly clear that the microenvironment plays crucial roles in the establishment and progression of diseases such as cardiovascular disease, neurodegeneration, cancer, and ageing. Here we review the historical perspectives on the microenvironment, and how it has directed current explorations in tissue engineering. By thoroughly understanding the role of the microenvironment, we can begin to correctly ...


Hyper-Activation Of Pp60(Src) Limits Nitric Oxide Signaling By Increasing Asymmetric Dimethylarginine Levels During Acute Lung Injury, Sanjiv Kumar, Xutong Sun, Satish Kumar Noonepalle, Qing Lu, Evgeny Zemskov, Ting Wang, Saurabh Aggarwal, Christine Gross, Shruti Sharma, Ankit A. Sesai, John D. Catravas Jan 2017

Hyper-Activation Of Pp60(Src) Limits Nitric Oxide Signaling By Increasing Asymmetric Dimethylarginine Levels During Acute Lung Injury, Sanjiv Kumar, Xutong Sun, Satish Kumar Noonepalle, Qing Lu, Evgeny Zemskov, Ting Wang, Saurabh Aggarwal, Christine Gross, Shruti Sharma, Ankit A. Sesai, John D. Catravas

Bioelectrics Publications

The molecular mechanisms by which the endothelial barrier becomes compromised during lipopolysaccharide (LPS) mediated acute lung injury (ALI) are still unresolved. We have previously reported that the disruption of the endothelial barrier is due, at least in part, to the uncoupling of endothelial nitric oxide synthase (eNOS) and increased peroxynitrite-mediated nitration of RhoA. The purpose of this study was to elucidate the molecular mechanisms by which LPS induces eNOS uncoupling during ALI. Exposure of pulmonary endothelial cells (PAEC) to LPS increased pp60Src activity and this correlated with an increase in nitric oxide (NO) production, but also an increase in ...


Vascular Endothelial Growth Factor-A Gene Electrotransfer Promotes Angiogenesis In A Porcine Model Of Cardiac Ischemia, Anna A. Bulysheva, Barbara Hargrave, Nina Burcus, Cathryn G. Lundberg, Len Murray, Richard Heller Aug 2016

Vascular Endothelial Growth Factor-A Gene Electrotransfer Promotes Angiogenesis In A Porcine Model Of Cardiac Ischemia, Anna A. Bulysheva, Barbara Hargrave, Nina Burcus, Cathryn G. Lundberg, Len Murray, Richard Heller

Bioelectrics Publications

This study aimed to assess safety and therapeutic potential of gene electrotransfer (GET) as a method for delivery of plasmid encoding vascular endothelial growth factor A (VEGF-A) to ischemic myocardium in a porcine model. Myocardial ischemia was induced by surgically occluding the left anterior descending coronary artery in swine. GET following plasmid encoding VEGF-A injection was performed at four sites in the ischemic region. Control groups either received injections of the plasmid without electrotransfer or injections of the saline vehicle. Animals were monitored for 7 weeks and the hearts were evaluated for angiogenesis, myocardial infarct size and left ventricular contractility ...


Isquest: Finding Insertion Sequences In Prokaryotic Sequence Fragment Data, Abhishek Biswas, David T. Gauthier, Desh Ranjan, Mohammad Zubair Jun 2015

Isquest: Finding Insertion Sequences In Prokaryotic Sequence Fragment Data, Abhishek Biswas, David T. Gauthier, Desh Ranjan, Mohammad Zubair

Computer Science Faculty Publications

Motivation: Insertion sequences (ISs) are transposable elements present in most bacterial and archaeal genomes that play an important role in genomic evolution. The increasing availability of sequenced prokaryotic genomes offers the opportunity to study ISs comprehensively, but development of efficient and accurate tools is required for discovery and annotation. Additionally, prokaryotic genomes are frequently deposited as incomplete, or draft stage because of the substantial cost and effort required to finish genome assembly projects. Development of methods to identify IS directly from raw sequence reads or draft genomes are therefore desirable. Software tools such as Optimized Annotation System for Insertion Sequences ...


Introduction To Fifth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier Jan 2015

Introduction To Fifth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier

Bioelectrics Publications

This special issue of the Journal of Membrane Biology contains reports on recent developments in the field of electroporation by participants in the International Workshop and Postgraduate Course on Electroporation-Based Technologies and Treatments held in November 2014 in Ljubljana. This was the eighth session of what is now an annual event, first organized in 2003.


Evaluations Of A Mechanistic Hypothesis For The Influence Of Extracellular Ions On Electroporation Due To High-Intensity, Nanosecond Pulsing, V. Sridhara, R. P. Joshi Jan 2014

Evaluations Of A Mechanistic Hypothesis For The Influence Of Extracellular Ions On Electroporation Due To High-Intensity, Nanosecond Pulsing, V. Sridhara, R. P. Joshi

Electrical & Computer Engineering Faculty Publications

The effect of ions present in the extracellular medium on electroporation by high-intensity, short-duration pulsing is studied through molecular dynamic simulations. Our simulation results indicate that mobile ions in the medium might play a role in creating stronger local electric fields across membranes that then reinforce and strengthen electroporation. Much faster pore formation is predicted in higher conductivity media. However, the impact of extracellular conductivity on cellular inflows, which depend on transport processes such as electrophoresis, could be different as discussed here. Our simulation results also show that interactions between cations (Na+ in this case) and the carbonyl oxygen of ...


Response To "Sodium Current Inhibition By Nanosecond Pulsed Electric Field (Nspef) - Fact Or Artifact?" By Verkerk Et Al, Andrei G. Pakhomov Jan 2013

Response To "Sodium Current Inhibition By Nanosecond Pulsed Electric Field (Nspef) - Fact Or Artifact?" By Verkerk Et Al, Andrei G. Pakhomov

Bioelectrics Publications

It was nice to learn that our studies of nanosecond pulsed electric field (nsPEF) effects on membrane currents [Nesin et al., 2012; Nesin and Pakhomov, 2012] gained the attention of scientists outside the immediate field of bioelectromagnetics.


Real-Time In Vivo Imaging Of Size-Dependent Transport And Toxicity Of Gold Nanoparticles In Zebrafish Embryos Using Single Nanoparticle Plasmonic Spectroscopy, Lauren M. Browning, Tao Huang, Xiao-Hong Nancy Xu Jan 2013

Real-Time In Vivo Imaging Of Size-Dependent Transport And Toxicity Of Gold Nanoparticles In Zebrafish Embryos Using Single Nanoparticle Plasmonic Spectroscopy, Lauren M. Browning, Tao Huang, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Noble metal nanoparticles (NPs) show distinctive plasmonic optical properties and superior photostability, enabling them to serve as photostable multicoloured optical molecular probes and sensors for real-time in vivo imaging. To effectively study biological functions in vivo, it is essential that the NP probes are biocompatible and can be delivered into living organisms non-invasively. In this study, we have synthesized, purified and characterized stable (non-aggregated) gold (Au) NPs (86.2 +/- 10.8 nm). We have developed dark-field single NP plasmonic microscopy and spectroscopy to study their transport into early developing zebrafish embryos (cleavage stage) and their effects on embryonic development ...


Microfluidic Impedance Spectroscopy As A Tool For Quantitative Biology And Biotechnology, Ahmet C. Sabuncu, Jie Zhuang, Juergen F. Kolb, Ali Beskok Jan 2012

Microfluidic Impedance Spectroscopy As A Tool For Quantitative Biology And Biotechnology, Ahmet C. Sabuncu, Jie Zhuang, Juergen F. Kolb, Ali Beskok

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to ...


Evaluation Of Delivery Conditions For Cutaneous Plasmid Electrotransfer Using A Multielectrode Array, Bernadette Ferraro, Loree C. Heller, Yolmari L. Cruz, Siqi Guo, Amy Donate, Richard Heller May 2011

Evaluation Of Delivery Conditions For Cutaneous Plasmid Electrotransfer Using A Multielectrode Array, Bernadette Ferraro, Loree C. Heller, Yolmari L. Cruz, Siqi Guo, Amy Donate, Richard Heller

Bioelectrics Publications

Electroporation (EP) is a simple in vivo method to deliver normally impermeable molecules, such as plasmid DNA, to a variety of tissues. Delivery of plasmid DNA by EP to a large surface area is not practical because the distance between the electrode pairs, and therefore the applied voltage, must be increased to effectively permeabilize the cell membrane. The design of the multielectrode array (MEA) incorporates multiple electrode pairs at a fixed distance to allow for delivery of plasmid DNA to the skin, potentially reducing the sensation associated with in vivo EP. In this report, we evaluate the effects of field ...


Electric Pulses To Prepare Feeder Cells For Sustaining And Culturing Of Undifferentiated Embryonic Stem Cells, Lauren M. Browning, Tao Huang, Xiao-Hong Nancy Xu Jan 2010

Electric Pulses To Prepare Feeder Cells For Sustaining And Culturing Of Undifferentiated Embryonic Stem Cells, Lauren M. Browning, Tao Huang, Xiao-Hong Nancy Xu

Chemistry & Biochemistry Faculty Publications

Current challenges in embryonic-stem-cell (ESC) research include inability of sustaining and culturing of undifferentiated ESCs over time. Growth-arrested feeder cells are essential to the culture and sustaining of undifferentiated ESCs, and they are currently prepared using gammaradiation and chemical inactivation. Both techniques have severe limitations. In this study, we developed a new, simple and effective technique (pulsed-electric-fields, PEFs) to produce viable growth-arrested cells (RTS34st) and used them as high-quality feeder cells to culture and sustain undifferentiated zebrafish ESCs over time. The cells were exposed to 25 sequential 10- nanosecond-electric-pulses (10nsEPs) of 25, 40 and 150 kV/cm with 1s pulse ...


Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller Jan 2010

Electroporation-Mediated Delivery Of A Naked Dna Plasmid Expressing Vegf To The Porcine Heart Enhances Protein Expression, W. G. Marshall Jr., B. A. Boone, J. D. Burgos, S. I. Gografe, M. K. Baldwin, M. L. Danielson, M. J. Larson, D. R. Caretto, Y. Cruz, B. Ferraro, L. C. Heller, K. E. Ugen, M. J. Jaroszeski, R. Heller

Bioelectrics Publications

Gene therapy is an attractive method for the treatment of cardiovascular disease. However, using current strategies, induction of gene expression at therapeutic levels is often inefficient. In this study, we show a novel electroporation (EP) method to enhance the delivery of a plasmid expressing an angiogenic growth factor (vascular endothelial growth factor, VEGF), which is a molecule previously documented to stimulate revascularization in coronary artery disease. DNA expression plasmids were delivered in vivo to the porcine heart with or without coadministered EP to determine the potential effect of electrically mediated delivery. The results showed that plasmid delivery through EP significantly ...


Increased Perfusion And Angiogenesis In A Hindlimb Ischemia Model With Plasmid Fgf-2 Delivered By Noninvasive Electroporation, B. Ferraro, Y. L. Cruz, M. Baldwin, D. Coppola, R. Heller Jan 2010

Increased Perfusion And Angiogenesis In A Hindlimb Ischemia Model With Plasmid Fgf-2 Delivered By Noninvasive Electroporation, B. Ferraro, Y. L. Cruz, M. Baldwin, D. Coppola, R. Heller

Bioelectrics Publications

Gene therapy approaches delivering fibroblast growth factor-2 (FGF-2) have shown promise as a potential treatment for increasing blood flow to ischemic limbs. Currently, effective noninvasive techniques to deliver plasmids encoding genes of therapeutic interest, such as FGF-2, are limited. We sought to determine if intradermal injection of plasmid DNA encoding FGF-2 (pFGF) followed by noninvasive cutaneous electroporation (pFGFE+) could increase blood flow and angiogenesis in a rat model of hindlimb ischemia. pFGFE+ or control treatments were administered on postoperative day 0. Compared to injection of pFGF alone (pFGFE-), delivery of pFGFE+ significantly increased FGF-2 expression for 10 days. Further, the ...


Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller Dec 2008

Comparison Of Electrically Mediated And Liposome-Complexed Plasmid Dna Delivery To The Skin, Loree C. Heller, Mark J. Jaroszeski, Domenico Coppola, Richard Heller

Bioelectrics Publications

BACKGROUND: Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery.

METHODS: Enhanced electrically-mediated delivery, and less extensively, liposome complexed delivery, of a plasmid encoding the reporter luciferase was tested in rodent skin. Expression kinetics and tissue damage were explored as well as testing in a second rodent model.

RESULTS: Experiments confirm ...


Optimization Of Cutaneous Electrically Mediated Plasmid Dna Delivery Using Novel Electrode, L. C. Heller, M. J. Jaroszeski, D. Coppola, A. N. Mccray, J. Hickey, R. Heller Feb 2007

Optimization Of Cutaneous Electrically Mediated Plasmid Dna Delivery Using Novel Electrode, L. C. Heller, M. J. Jaroszeski, D. Coppola, A. N. Mccray, J. Hickey, R. Heller

Bioelectrics Publications

The easy accessibility of skin makes it an excellent target for gene transfer protocols. To take advantage of skin as a target for gene transfer, it is important to establish an efficient and reproducible delivery system. Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo. A critical component of this technique is the electrode configuration. Electroporation parameters were optimized for transgene expression with minimal tissue damage with a novel electrode. The highest transgene expression and efficiency of individual cell transformation with minimal damage was produced with eight 150 ms pulses at field strength of 100 ...


Evaluation Of Toxicity Following Electrically Mediated Interleukin-12 Gene Delivery In A B16 Mouse Melanoma Model, Loree Heller, Kathleen Merkler, Jeffrey Westover, Yolmari Cruz, Domenico Coppola, Kaaron Benson, Adil Daud, Richard Heller May 2006

Evaluation Of Toxicity Following Electrically Mediated Interleukin-12 Gene Delivery In A B16 Mouse Melanoma Model, Loree Heller, Kathleen Merkler, Jeffrey Westover, Yolmari Cruz, Domenico Coppola, Kaaron Benson, Adil Daud, Richard Heller

Bioelectrics Publications

PURPOSE: Interleukin-12 (IL-12) has potential as an immunotherapeutic agent for the treatment of cancer but is unfortunately associated with toxicity. Delivery of a plasmid encoding IL-12 with electroporation induces an antitumor effect in the B16 mouse melanoma model without serious side effects. To translate this observation to the clinic, an evaluation of toxicity was done in the mouse model.

EXPERIMENTAL DESIGN: Weight change, tumor response, blood chemistry and hematology values, and serum IL-12 levels were evaluated. Multiple tissues were analyzed histopathologically.

RESULTS: A pronounced reduction in tumor volume, including a large percentage of complete regressions, was observed after electrically mediated ...


Plasma Membrane Voltage Changes During Nanosecond Pulsed Electric Field Exposure, W. Frey, R. O. Price, P. F. Blackmore, R. P. Joshi, R. Nuccitelli, S. J. Beebe, K. H. Schoenbach, J. F. Kolb Jan 2006

Plasma Membrane Voltage Changes During Nanosecond Pulsed Electric Field Exposure, W. Frey, R. O. Price, P. F. Blackmore, R. P. Joshi, R. Nuccitelli, S. J. Beebe, K. H. Schoenbach, J. F. Kolb

Bioelectrics Publications

The change in the membrane potential of Jurkat cells in response to nanosecond pulsed electric fields was studied for pulses with a duration of 60 ns and maximum field strengths of similar to 100 kV/cm (100 V/cell diameter). Membranes of Jurkat cells were stained with a fast voltage-sensitive dye, ANNINE-6, which has a subnanosecond voltage response time. A temporal resolution of 5 ns was achieved by the excitation of this dye with a tunable laser pulse. The laser pulse was synchronized with the applied electric field to record images at times before, during, and after exposure. When exposing ...


Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach Jan 2005

Selective Field Effects On Intracellular Vacuoles And Vesicle Membranes With Nanosecond Electric Pulses, Ephrem Tekle, Hammou Oubrahim, Sergey M. Dzekunov, Juergen F. Kolb, Karl H. Schoenbach

Bioelectrics Publications

Electric pulses across intact vesicles and cells can lead to transient increase in permeability of their membranes. We studied the integrity of these membranes in response to external electric pulses of high amplitude and submicrosecond duration with a primary aim of achieving selective permeabilization. These effects were examined in two separate model systems comprising of 1), a mixed population of 1,2-di-oleoyl-sn-glycero-3-phosphocholine phospholipid vesicles and in 2), single COS-7 cells, in which large endosomal membrane vacuoles were induced by stimulated endocytosis. It has been shown that large and rapidly varying external electric fields, with pulses shorter than the charging time ...


Effect Of Humic Substance Photodegradation On Bacterial Growth And Respiration In Lake Water, Alexandre M. Anesio, William Granéli, George R. Aiken, David J. Kieber, Kenneth Mopper Jan 2005

Effect Of Humic Substance Photodegradation On Bacterial Growth And Respiration In Lake Water, Alexandre M. Anesio, William Granéli, George R. Aiken, David J. Kieber, Kenneth Mopper

Chemistry & Biochemistry Faculty Publications

This study addresses how humic substance (HS) chemical composition and photoreactivity affect bacterial growth, respiration, and growth efficiency (BGE) in lake water. Aqueous solutions of HSs from diverse aquatic environments representing different dissolved organic matter sources (autochthonous and allochthonous) were exposed to artificial solar UV radiation. These solutions were added to lake water passed through a 0.7-μm pore-size filter (containing grazer-free lake bacteria) followed by dark incubation for 5, 43, and 65 h. For the 5-h incubation, several irradiated HSs inhibited bacterial carbon production (BCP) and this inhibition was highly correlated with H2O2 photoproduction. The H ...


Computational Protein Biomarker Prediction: A Case Study For Prostate Cancer, Michael Wagner, Dayanand N. Naik, Alex Pothen, Srinivas Kasukurti, Raghu Ram Devineni, Bao-Ling Adam, O. John Semmes, George L. Wright Jr. Jan 2004

Computational Protein Biomarker Prediction: A Case Study For Prostate Cancer, Michael Wagner, Dayanand N. Naik, Alex Pothen, Srinivas Kasukurti, Raghu Ram Devineni, Bao-Ling Adam, O. John Semmes, George L. Wright Jr.

Mathematics & Statistics Faculty Publications

Background: Recent technological advances in mass spectrometry pose challenges in computational mathematics and statistics to process the mass spectral data into predictive models with clinical and biological significance. We discuss several classification-based approaches to finding protein biomarker candidates using protein profiles obtained via mass spectrometry, and we assess their statistical significance. Our overall goal is to implicate peaks that have a high likelihood of being biologically linked to a given disease state, and thus to narrow the search for biomarker candidates.

Results: Thorough cross-validation studies and randomization tests are performed on a prostate cancer dataset with over 300 patients, obtained ...


The Effects Of Intense Submicrosecond Electrical Pulses On Cells, Jingdong Deng, Karl H. Schoenbach, E. Stephen Buescher, Pamela S. Hair, Paula M. Fox, Stephen J. Beebe Apr 2003

The Effects Of Intense Submicrosecond Electrical Pulses On Cells, Jingdong Deng, Karl H. Schoenbach, E. Stephen Buescher, Pamela S. Hair, Paula M. Fox, Stephen J. Beebe

Bioelectrics Publications

A simple electrical model for living cells predicts an increasing probability for electric field interactions with intracellular substructures of both prokaryotic and eukaryotic cells when the electric pulse duration is reduced into the submicrosecond range. The validity of this hypothesis was verified experimentally by applying electrical pulses (durations 100 μs– 60 ns, electric field intensities 3–150 kV/cm) to Jurkat cells suspended in physiologic buffer containing propidium iodide. Effects on Jurkat cells were assessed by means of temporally resolved fluorescence and light microscopy. For the longest applied pulses, immediate uptake of propidium iodide occurred consistent with electroporation as the ...


Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola Oct 2002

Electrically Mediated Delivery Of Vector Plasmid Dna Elicits An Antitumor Effect, L. Heller, D. Coppola

Bioelectrics Publications

In vivo electroporation is an efficient means of increasing plasmid DNA delivery to normal tissues, such as skin and muscle, as well as directly to tumors. In the experiments described here, plasmid DNA was delivered by in vivo electroporation to B16 mouse melanomas using two very different pulsing protocols. Reporter expression increased 21- or 42-fold, respectively with electroporation over injection alone. The growth of experimental melanomas with an approximate diameter of 4 mm on the day of treatment was monitored after electroporation delivery of reporter plasmid DNA. Remarkably, short-term complete regressions using one of these pulsing protocols occurred in up ...


Electrically Mediated Plasmid Dna Delivery To Hepatocellular Carcinomas In Vivo, L. Heller, M. J. Jaroszeski, D. Coppola, C. Pottinger, R. Gilbert, Richard Heller May 2000

Electrically Mediated Plasmid Dna Delivery To Hepatocellular Carcinomas In Vivo, L. Heller, M. J. Jaroszeski, D. Coppola, C. Pottinger, R. Gilbert, Richard Heller

Bioelectrics Publications

Gene therapy by direct delivery of plasmid DNA has several advantages over viral gene transfer, but plasmid delivery is less efficient. In vivo electroporation has been used to enhance delivery of chemotherapeutic agents to tumors in both animal and human studies. Recently, this delivery technique has been extended to large molecules such as plasmid DNA. Here, the successful delivery of plasmids encoding reporter genes to rat hepatocellular carcinomas by in vivo electroporation is demonstrated.


Molecular Cloning And Rare Cleavage Mapping Of Human 2p, 6q, 8q, 12q, And 18q Telomeres, Roberto A. Macina, Ken Morii, Xue-Lan Hu, Dimitri G. Negorev, Chrysanthe Spais, Lisa A. Ruthig, Harold C. Riethman Jan 1995

Molecular Cloning And Rare Cleavage Mapping Of Human 2p, 6q, 8q, 12q, And 18q Telomeres, Roberto A. Macina, Ken Morii, Xue-Lan Hu, Dimitri G. Negorev, Chrysanthe Spais, Lisa A. Ruthig, Harold C. Riethman

Medical Diagnostics & Translational Sciences Faculty Publications

Large terminal fragments of human chromosomes 2p, 6q, 8q, 12q, and 18q were cloned using yeast artificial chromosomes (YACs). RecA-assisted restriction endonuclease (RARE) cleavage analysis of genomic DNA samples from 11 unrelated individuals using YAC-derived probes confirmed the telomeric localizations of the half-YACs studied. The cloned Fragments provide telomeric closure of maps for the respective chromosome arms and will supply the reagents needed for analyzing and sequencing these distal subtelomeric regions.