Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Electron Flow And Management In Living Systems: Advancing Understanding Of Electron Transfer To Nitrogenase, Rhesa N. Ledbetter Aug 2018

Electron Flow And Management In Living Systems: Advancing Understanding Of Electron Transfer To Nitrogenase, Rhesa N. Ledbetter

All Graduate Theses and Dissertations

Nitrogen is a critical nutrient for growth and reproduction in living organisms. Although the Earth’s atmosphere is composed of ~80% nitrogen gas (N2), it is inaccessible to most living organisms in that form. Biological nitrogen fixation, however, can be performed by microbes that harbor the enzyme nitrogenase. This enzyme converts N2 into bioavailable ammonia (NH3) and accounts for at least half of the “fixed”nitrogen on the planet. The other major contributor to ammonia production is the industrial Haber-Bosch process. While the Haber-Bosch process has made significant advances in sustaining the global food supply through the generation of fertilizer ...


Electron Transfer To Nitrogenase In Different Genomic And Metabolic Backgrounds, Saroj Poudel, Daniel R. Colman, Kathryn R. Fixen, Rhesa N. Ledbetter, Yanning Zheng, Natasha Pence, Lance C. Seefeldt, John W. Peters, Caroline S. Harwood, Eric S. Boyd Feb 2018

Electron Transfer To Nitrogenase In Different Genomic And Metabolic Backgrounds, Saroj Poudel, Daniel R. Colman, Kathryn R. Fixen, Rhesa N. Ledbetter, Yanning Zheng, Natasha Pence, Lance C. Seefeldt, John W. Peters, Caroline S. Harwood, Eric S. Boyd

Chemistry and Biochemistry Faculty Publications

Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages ...


Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller Feb 2018

Distinct Properties Underlie Flavin-Based Electron Bifurcation In A Novel Electron Transfer Flavoprotein Fixab From Rhodopseudomonas Palustris, H. Diessel Duan, Carolyn E. Lubner, Monika Tokmina-Lukaszewska, George H. Gauss, Brian Bothner, Paul W. King, John W. Peters, Anne-Frances Miller

Chemistry Faculty Publications

A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV–visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and ...


Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters Nov 2017

Defining Electron Bifurcation In The Electron-Transferring Flavoprotein Family, Amaya M. Garcia Costas, Saroj Poudel, Anne-Frances Miller, Gerrit J. Schut, Rhesa N. Ledbetter, Kathryn R. Fixen, Lance C. Seefeldt, Michael W. W. Adams, Caroline S. Harwood, Eric S. Boyd, John W. Peters

Chemistry Faculty Publications

Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the ...


Mechanism Of Substrate Reduction By Nitrogenase, Nimesh Khadka May 2017

Mechanism Of Substrate Reduction By Nitrogenase, Nimesh Khadka

All Graduate Theses and Dissertations

Nitrogen (N) is a chemical constituent for almost all biological molecules including proteins, DNA, RNA, lipids and is therefore vital for life. The ultimate source of nitrogen is the atmospheric dinitrogen (N2) but that only becomes bioavailable through a process of nitrogen fixation, the process that converts N2 to ammonia (NH3). The industrial Haber-Bosch process and biological nitrogen fixation account for the majority of nitrogen fixed every year. However, due to its high temperature, pressure and fossil fuel requirements, Haber-Bosch is an expensive process. Every year, approximately 3% of the global energy demand is used to manufacture ...


Electron Transfer And Substrate Reduction In Nitrogenase, Karamatullah Danyal May 2014

Electron Transfer And Substrate Reduction In Nitrogenase, Karamatullah Danyal

All Graduate Theses and Dissertations

Population growth over the past ~50 years accompanied by the changes in dietary habits due to economic growth have markedly increased the demand for fixed nitrogen. Aided by biological nitrogen fixation, the Haber-Bosch process has been able to fulfill these demands. However, due to its high temperature and pressure requirements, Haber-Bosch is an expensive process. Every year, approximately 2% of the total energy expenditure by man is used to manufacture fixed nitrogen. Biological systems, on the other hand, produce ammonia at ambient temperature and pressure with much higher efficiency than the Haber-Bosch process. Research in the field of biological nitrogen ...


A Comparative Study Of The Structural Features And Kinetic Properties Of The Mofe And Vfe Proteins From Azotobacter Vinelandii, Miguel Alejandro Pabon Sanclemente May 2009

A Comparative Study Of The Structural Features And Kinetic Properties Of The Mofe And Vfe Proteins From Azotobacter Vinelandii, Miguel Alejandro Pabon Sanclemente

All Graduate Theses and Dissertations

Biological nitrogen fixation is accomplished in the bacterium Azotobacter vinelandii by means of three metalloenzymes: The molybdenum, vanadium, and iron-only nitrogenase. The knowledge regarding biological nitrogen fixation has come from studies on the Mo-dependent reaction. However, the V- and Fe-only-dependent reduction of nitrogen remains largely unknown. By using homology modeling techniques, the protein folds that contain the metal cluster active sites for the V- and Fe-only nitrogenases were constructed. The models uncovered similarities and differences existing among the nitrogenases regarding the identity of the amino acid residues lining pivotal structural features for the correct functioning of the proteins. These differences ...