Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Animal Sciences

Lake Mead (Ariz. and Nev.)

Articles 1 - 5 of 5

Full-Text Articles in Biochemistry, Biophysics, and Structural Biology

Comparison Of Water Quality, Zooplankton Density, And Cover In Razorback Sucker (Xyrauchen Texanus [Abbott]) Spawning Areas Of Lake Mead And Lake Mohave, Michael E. Golden, Paul B. Holden, Southern Nevada Water Authority Jul 2002

Comparison Of Water Quality, Zooplankton Density, And Cover In Razorback Sucker (Xyrauchen Texanus [Abbott]) Spawning Areas Of Lake Mead And Lake Mohave, Michael E. Golden, Paul B. Holden, Southern Nevada Water Authority

Publications (WR)

Las Vegas Bay and Echo Bay in Lake Mead have small, self-sustaining populations of razorback sucker (Xyrauchen texanus [Abbot]). Increased productivity and cover have been hypothesized as reasons for successful recruitment of razorback sucker in Lake Mead. Conversely, reproduction has been documented on Lake Mohave, another lower Colorado River reservoir, but no recruitment has been observed. In 2000, BIO-WEST, Inc. was contracted by the Southern Nevada Water Authority to design and implement a study to examine nutrient levels, zooplankton density, and cover in areas with and without razorback sucker recruitment success. We sampled Echo Bay, Las Vegas Bay, and Trail ...


Characterization Of The Aquatic Environment In Lake Mead Near The Proposed Spring Canyon Pumped-Storage Project, And Assessment Of Potential Aquatic Impacts, Charles R. Liston, Stephen J. Grabowski, Bureau Of Reclamation Jun 1988

Characterization Of The Aquatic Environment In Lake Mead Near The Proposed Spring Canyon Pumped-Storage Project, And Assessment Of Potential Aquatic Impacts, Charles R. Liston, Stephen J. Grabowski, Bureau Of Reclamation

Publications (WR)

A pumped storage system consists of an upper reservoir and lower reservoir separated by an elevation difference. During low demand energy periods such as nights and weekends water is pumped from the lower to the upper reservoir using available energy from conventional steam electric power plants. During high energy demand periods, such as mornings and afternoons of weekdays, upper reservoir water is allowed to drop back down through the same system of water conduits and turbines, generating electricity to conveniently meet abrupt electrical energy requirements. The same water turbines thus act both as pumps and as conventional hydroelectric turbines.

Because ...


Lake Mead Cover Enhancement Project, Jennifer Stevens Haley, Suzanne Leavitt, Larry Paulson, Donald H. Baepler Jul 1987

Lake Mead Cover Enhancement Project, Jennifer Stevens Haley, Suzanne Leavitt, Larry Paulson, Donald H. Baepler

Publications (WR)

Ninety-three wildlife agencies were surveyed for information on their attempts to improve fish habitat. In addition, an annotated bibliography including over 100 summaries was completed on:

1. largemouth bass cover requirements and preferences,

2. use and effectiveness of artificial cover,

3. aquatic plant introduction and species requirements for germination and establishment,

4. terrestrial plant introduction and species requirements for germination and establishment, and

5. nutrient exchange between sediment, aquatic plants, and water.

A reconnaissance of existing terrestrial and aquatic vegetation was completed in June 1986 including the production of a video tape of the Nevada shoreline of Lake Mead.

Cover ...


Historical Patterns Of Phytoplankton Productivity In Lake Mead, Richard T. Prentki, Larry J. Paulson Jan 1983

Historical Patterns Of Phytoplankton Productivity In Lake Mead, Richard T. Prentki, Larry J. Paulson

Publications (WR)

Lake Mead was impounded in 1935 by the construction of Hoover Dam. The Colorado River was unregulated prior to then and therefore was subjected to extreme variations in flows and suspended sediment loads. Hoover Dam stabilized flows and reduced suspended sediment loads downstream, but Lake Mead still received silt-laden inflows from the upper Colorado River Basin. The Colorado River contributed 97% of the suspended sediment inputs to Lake Mead, and up to 140 x 1O6 metric tons (t) entered the reservoir in years of high runoff. Most of the sediments were deposited in the river channel and formed an ...


Potential Use Of Hydroelectric Facilities For Manipulating The Fertility Of Lake Mead, Larry J. Paulson, John R. Baker, James E. Deacon Jan 1979

Potential Use Of Hydroelectric Facilities For Manipulating The Fertility Of Lake Mead, Larry J. Paulson, John R. Baker, James E. Deacon

Publications (WR)

Analysis of historical nutrient data for Lake Mead indicates that the fertility of the reservoir has decreased which may be the cause for a corresponding decline in the largemouth bass population. However, it appears that fertility can be manipulated by altering the operation of the dam. The depletion of nutrients in the euphotic zone by phytoplankton and subsequent accumulation in the hypolimnion during summer and fall provide a natural nutrient gradient from which water of varying fertility can be drawn for discharge. This combined with alterations in the depth or seasonal pattern of discharge can possibly be used to enhance ...