Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Continuous Low-Intensity Ultrasound Attenuates Il-6 And Tnfα-Induced Catabolic Effects And Repairs Chondral Fissures In Bovine Osteochondral Explants, Neety Sahu, Hendrik J. Viljoen, Anuradha Subramanian Jan 2019

Continuous Low-Intensity Ultrasound Attenuates Il-6 And Tnfα-Induced Catabolic Effects And Repairs Chondral Fissures In Bovine Osteochondral Explants, Neety Sahu, Hendrik J. Viljoen, Anuradha Subramanian

Chemical and Biomolecular Engineering -- All Faculty Papers

Background: Cartilage repair outcomes are compromised in a pro-inflammatory environment; therefore, the mitigation of pro-inflammatory responses is beneficial. Treatment with continuous low-intensity ultrasound (cLIUS) at the resonant frequency of 5 MHz is proposed for the repair of chondral fissures under pro-inflammatory conditions.

Methods: Bovine osteochondral explants, concentrically incised to create chondral fissures, were maintained under cLIUS (14 kPa (5 MHz, 2.5 Vpp), 20 min, 4 times/day) for a period of 28 days in the presence or absence of cytokines, interleukin-6 (IL-6) or tumor necrosis factor (TNF)α. Outcome assessments included histological and immunohistochemical staining of the explants; and ...


Manipulation Of The Precursor Supply For High-Level Production Of Longifolene By Metabolically Engineered Escherichia Coli, Yujin Cao, Rubing Zhang, Wei Liu, Guang Zhao, Wei Niu, Jiantao Guo, Mo Xian, Huizhou Liu Jan 2019

Manipulation Of The Precursor Supply For High-Level Production Of Longifolene By Metabolically Engineered Escherichia Coli, Yujin Cao, Rubing Zhang, Wei Liu, Guang Zhao, Wei Niu, Jiantao Guo, Mo Xian, Huizhou Liu

Chemical and Biomolecular Engineering -- All Faculty Papers

Longifolene is a naturally occurring tricyclic sesquiterpene widely used in many different fields. Up to now, this valuable terpene was mainly manufactured from the high-boiling fraction of certain pine resins. Microbial production can be a promising alternative to the extraction from natural plant sources. Here, we present the metabolic engineering strategy to assemble biosynthetic pathway for longifolene production in Escherichia coli. E. coli was rendered to produce longifolene by heterologously expressing a codon optimized longifolene synthase from Picea abies. Augmentation of the metabolic flux to farnesyl pyrophosphate (FPP) by different FPP synthases conferred a 1.8-fold increase in longifolene production ...