Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

University of Massachusetts Medical School

Cellular and Molecular Physiology

Cancer genomics

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Jnk(1/2) Represses Lkb(1)-Deficiency-Induced Lung Squamous Cell Carcinoma Progression, Jian Liu, Tianyuan Wang, Chad J. Creighton, San-Pin Wu, Madhumita Ray, Kyathanahalli S. Janardhan, Cynthia J. Willson, Sung-Nam Cho, Patricia D. Castro, Michael M. Ittmann, Jian-Liang Li, Roger J. Davis, Francesco J. Demayo May 2019

Jnk(1/2) Represses Lkb(1)-Deficiency-Induced Lung Squamous Cell Carcinoma Progression, Jian Liu, Tianyuan Wang, Chad J. Creighton, San-Pin Wu, Madhumita Ray, Kyathanahalli S. Janardhan, Cynthia J. Willson, Sung-Nam Cho, Patricia D. Castro, Michael M. Ittmann, Jian-Liang Li, Roger J. Davis, Francesco J. Demayo

Open Access Articles

Mechanisms of lung squamous cell carcinoma (LSCC) development are poorly understood. Here, we report that JNK1/2 activities attenuate Lkb1-deficiency-driven LSCC initiation and progression through repressing DeltaNp63 signaling. In vivo Lkb1 ablation alone is sufficient to induce LSCC development by reducing MKK7 levels and JNK1/2 activities, independent of the AMPKalpha and mTOR pathways. JNK1/2 activities is positively regulated by MKK7 during LSCC development. Pharmaceutically elevated JNK1/2 activities abates Lkb1 dependent LSCC formation while compound mutations of Jnk1/2 and Lkb1 further accelerate LSCC progression. JNK1/2 is inactivated in a substantial proportion of human LSCC and JNK1 ...