Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

2019

Biochemistry

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 125

Full-Text Articles in Life Sciences

Electron Transfer Activity Of Mitochondria Neet-Proteins, Yiming Wang Jul 2019

Electron Transfer Activity Of Mitochondria Neet-Proteins, Yiming Wang

LSU Doctoral Dissertations

Mitochondrial NEET proteins are recently discovered iron-sulfur proteins that are localized within mitochondria. There are three NEET proteins: mitoNEET, a type II diabetes drug pioglitazone binding target, a mitoNEET related protein 1 (Miner1 or NAF-1), and a mitoNEET-related protein 2 (Miner2). While both mitoNEET and Miner1 are mitochondrial outer membrane proteins, Miner2 is a mitochondrial matrix protein. All three NEET proteins bind at least one [2Fe-2S] cluster via CDGSH (Cys-Asp-Gly-Ser-His) motif. In this work, we have investigated the electron transfer activity of mitoNEET, and found that the CDGSH-type [2Fe-2S] clusters of mitoNEET can be reduced by the reduced flavin mononucleotide ...


Hexavalent Chromium-Induced Cytotoxicity And Mutagenicity: A Study Of Protection By Ascorbic Acid And Epigallocatechin Gallate, Timothy P. Mayotte Jul 2019

Hexavalent Chromium-Induced Cytotoxicity And Mutagenicity: A Study Of Protection By Ascorbic Acid And Epigallocatechin Gallate, Timothy P. Mayotte

Honors Program Projects

Hexavalent chromium, or Cr(VI), is a potent oxidizer and known carcinogen, that is found at varying levels in the water sources of more than 200 million Americans. However, the exact mechanism of carcinogenicity remains unknown, and though the government currently regulates total chromium levels, they have yet to determine a permissible exposure limit for Cr(VI). Moreover, there is currently no preventative treatment for Cr(VI). Because of Cr(VI)’s strong oxidative power, we hypothesized that it causes DNA mutation and cell death via oxidation and that antioxidants could prevent this from occurring. To test this, we first ...


Tracing Nutrient Sources To Lipid Production In Insects Using Stable Isotope (Δ13c, Δ2h) Tracers: Implications For Nutritional Physiology Of Migratory Species., Libesha Anparasan, Keith A. Hobson Jun 2019

Tracing Nutrient Sources To Lipid Production In Insects Using Stable Isotope (Δ13c, Δ2h) Tracers: Implications For Nutritional Physiology Of Migratory Species., Libesha Anparasan, Keith A. Hobson

Western Research Forum

Using stable isotope measurements of insect tissues to determine origin and migratory patterns is well established. However, isotopically determining nutritional origins of lipids, the primary fuel of migration, has not been as thoroughly researched. We explored isotopic links between diet and stored lipids in laboratory raised True armyworm moths (Mythimna unipuncta) using δ13C and δ2H measurements. Pupae were randomly separated into four groups (n=20) and fed isotopically distinct nectar, each consisting of a combination of high δ13C (C4 sugar), or low δ13C (C3 sugar) carbohydrate, with high δ2H (deuterium ...


The Wet Bridge Transfer System: An Novel In Vitro Tool For Assessing Exogenous Surfactant As A Pulmonary Drug Delivery Vehicle, Brandon J. Baer Jun 2019

The Wet Bridge Transfer System: An Novel In Vitro Tool For Assessing Exogenous Surfactant As A Pulmonary Drug Delivery Vehicle, Brandon J. Baer

Western Research Forum

Background:

Due to its complex branching structure, direct drug delivery to the remote areas of the lung is a major challenge. Consequently, most therapies, such as those treating pulmonary infection and inflammation, must utilize large systemic dosing, with the potential for adverse side effects. A novel alternative strategy is to use exogenous surfactant, a material capable of distributing throughout the lung, as a pulmonary drug delivery vehicle.

Objective:

Utilize an in vitro transferring system to assess exogenous surfactant (BLES) as a pulmonary delivery vehicle for different therapeutics.

Methods:

An in vitro technique was developed to simultaneously study surfactant delivery and ...


Iron-Sulfur Cluster Biosynthesis In Methanogens, Cuiping Zhao Jun 2019

Iron-Sulfur Cluster Biosynthesis In Methanogens, Cuiping Zhao

LSU Doctoral Dissertations

Methanogens live in a syntrophic consortium with bacteria, taking advantage of the metabolic abilities of their syntrophic partners to overcome energetic barriers and break down compounds that they cannot digest by themselves. Interspecies electron transfer, which is a major type of microbial communication in syntrophic processes, improves methanogenesis and anaerobic oxidization of methane (AOM) processes involved in syntrophic consortia. These processes have a significant impact on the global carbon cycle. Most of the essential enzymes involved in methanogenesis are iron-sulfur proteins. Iron-sulfur clusters are one of the oldest and most versatile cofactors present in all domains of life. To date ...


Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. Van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede Jun 2019

Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. Van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede

Kurt Piepenbrink

The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11.


Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink Jun 2019

Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink

Kurt Piepenbrink

Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake ...


Trim5alpha Restricts Flavivirus Replication By Targeting The Viral Protease For Proteasomal Degradation, Abhilash I. Chiramel, Nicholas R. Meyerson, Kristin L. Mcnally, Rebecca M. Broeckel, Vanessa R. Montoya, Omayra Mendez-Solis, Shelly J. Robertson, Gail L. Sturdevant, Kirk J. Lubick, Vinod Nair, Brian H. Youseff, Robin M. Ireland, Catharine M. Bosio, Kyusik Kim, Jeremy Luban, Vanessa M. Hirsch, R. Travis Taylor, Fadila Bouamr, Sara L. Sawyer, Sonja M. Best Jun 2019

Trim5alpha Restricts Flavivirus Replication By Targeting The Viral Protease For Proteasomal Degradation, Abhilash I. Chiramel, Nicholas R. Meyerson, Kristin L. Mcnally, Rebecca M. Broeckel, Vanessa R. Montoya, Omayra Mendez-Solis, Shelly J. Robertson, Gail L. Sturdevant, Kirk J. Lubick, Vinod Nair, Brian H. Youseff, Robin M. Ireland, Catharine M. Bosio, Kyusik Kim, Jeremy Luban, Vanessa M. Hirsch, R. Travis Taylor, Fadila Bouamr, Sara L. Sawyer, Sonja M. Best

Program in Molecular Medicine Publications and Presentations

Tripartite motif-containing protein 5alpha (TRIM5alpha) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5alpha is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5alpha suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5alpha-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5alpha suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and ...


Smooth Muscle Cell-Specific Tmem16a Deletion Does Not Alter Ca2+ Signaling, Uterine Contraction, Gestation Length Or Litter Size In Micedagger, Mingzi Qu, Ping Lu, Karl D. Bellve, Kevin E. Fogarty, Lawrence M. Lifshitz, Fangxiong Shi, Ronghua Zhuge Jun 2019

Smooth Muscle Cell-Specific Tmem16a Deletion Does Not Alter Ca2+ Signaling, Uterine Contraction, Gestation Length Or Litter Size In Micedagger, Mingzi Qu, Ping Lu, Karl D. Bellve, Kevin E. Fogarty, Lawrence M. Lifshitz, Fangxiong Shi, Ronghua Zhuge

Program in Molecular Medicine Publications and Presentations

Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance and parturition; thus identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found ...


Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman Jun 2019

Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman

Neal Silverman

Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-kappaB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.


Yeast Sirtuin Family Members Maintain Transcription Homeostasis To Ensure Genome Stability, Jessica L. Feldman, Craig L. Peterson Jun 2019

Yeast Sirtuin Family Members Maintain Transcription Homeostasis To Ensure Genome Stability, Jessica L. Feldman, Craig L. Peterson

Program in Molecular Medicine Publications and Presentations

The mammalian sirtuin, SIRT6, is a key tumor suppressor that maintains genome stability and regulates transcription, though how SIRT6 family members control genome stability is unclear. Here, we use multiple genome-wide approaches to demonstrate that the yeast SIRT6 homologs, Hst3 and Hst4, prevent genome instability by tuning levels of both coding and noncoding transcription. While nascent RNAs are elevated in the absence of Hst3 and Hst4, a global impact on steady-state mRNAs is masked by the nuclear exosome, indicating that sirtuins and the exosome provide two levels of regulation to maintain transcription homeostasis. We find that, in the absence of ...


Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery Jun 2019

Compositional Optimization Of Amyloid-Graphene Oxide Nanohybrids For Biomaterials, Claire L. Drewery

Materials Engineering

Amyloid nanofibrils are natural materials capable of self-assembling into precise structures with tunable functionalities, while exhibiting excellent mechanical properties. In combination with highly conductive graphene oxide (GO), the 1-D amyloid nanofibrils and 2-D nanosheets of GO can produce a robust and bio-functional nanohybrid, hypothesized to exhibit multi-domain functional properties useful for enzyme sensing, water purification, drug delivery, and tissue scaffolding applications. Here, we examine the properties of an amyloid-graphene oxide nanohybrid film made with amyloids derived from hen egg white lysozymes in an attempt to explore the diverse toolbox of amyloid derivatives and establish ideal fabrication methods and formulations of ...


Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker May 2019

Nf-Κb In Biomphalaria Glabrata: A Genetic Fluke?, Paige Stocker

Lawrence University Honors Projects

Biomphalaria glabrata is the intermediate host to the disease causing parasitic worm, Schistosoma mansoni. Previous work has identified homologs of NF-κB, a known immune related transcription factor, in B. glabrata and work has also been done to establish putative κB sites. It has also been observed that the p65 homologous subunit has an extended N-terminal region not present in other homologs. The goal of the present study is twofold: investigate DNA binding affinity of two NF-κB subunits, Bg-p65 and Bg-p50, and characterize the nature of the N-terminal extension of Bg-p65. In the current work, it is shown through the use ...


An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. Mcshan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin May 2019

An Order-To-Disorder Structural Switch Activates The Foxm1 Transcription Factor, Aimee H. Marceau, Caileen M. Brison, Santrupti Nerli, Heather E. Arsenault, Andrew C. Mcshan, Eefei Chen, Hsiau-Wei Lee, Jennifer A. Benanti, Nikolaos G. Sgourakis, Seth M. Rubin

Open Access Articles

Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that ...


Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova May 2019

Serum Deprivation Of Mesenchymal Stem Cells Improves Exosome Activity And Alters Lipid And Protein Composition, Reka A. Haraszti, Rachael Miller, Michelle L. Dubuke, Andrew H. Coles, Marie C. Didiot, Dimas Echeverria, Matteo Stoppato, Yves Y. Sere, John D. Leszyk, Julia F. Alterman, Bruno M. D. C. Godinho, Matthew R. Hassler, Rachel Wollacott, Yan Wang, Scott A. Shaffer, Neil Aronin, Anastasia Khvorova

Open Access Articles

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in ...


Dft Study On The Binding Of Selected Metal Ions With Phenylalanine Dipeptide, Ebtehal Alghamdi May 2019

Dft Study On The Binding Of Selected Metal Ions With Phenylalanine Dipeptide, Ebtehal Alghamdi

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

In this study, M06-2X/6-311+G(2d,2p) level calculations were performed to examine the binding energies and vibrational frequencies of different conformers of phenylalanine dipeptide interacting with metal ions (Na+, K+, Mg2+ and Ca2+). Four conformers were selected from the list of 20 most stable structures. The main goal was to understand the influence of conformers on the binding affinity of metal ions with different conformers of phenylalanine dipeptide. In agreement with experimental results, interactions of metal ions with two aromatic rings along with lone pair electrons of oxygen produced high stability. Binding energy was lowest for ...


Extraction, Purification And Evaluation Of Prmt5-Inhibitory Phytochemical Compounds For The Treatment Of Prostate Adenocarcinoma, Oliver H. Richmond Iii May 2019

Extraction, Purification And Evaluation Of Prmt5-Inhibitory Phytochemical Compounds For The Treatment Of Prostate Adenocarcinoma, Oliver H. Richmond Iii

Electronic Theses & Dissertations Collection for Atlanta University & Clark Atlanta University

The development and advancement of prostate cancer is supported by a plethora of genetic and proteomic abnormalities, including events of post-translational modifications. The protein arginine methyltransferase 5 (PRMT5) enzyme regulates epigenetic events of histone modifications and protein post-translational modifications within protein signaling pathways. PRMT5 functions by catalyzing the symmetric dimethylation of terminal arginine residues on target protein substrates. Under abnormal conditions of overexpression and upregulation, PRMT5 methyltransferase activity constitutively drives the growth and proliferation of dysregulated cells. Overexpression or upregulation of PRMT5 correlates with disease progression as observed among numerous cancer types, including breast, colorectal, leukemia, lung, melanoma and prostate ...


Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese May 2019

Synthesis, Stabilization, And Modification Of Zinc Oxide Nanoparticles For Biological Applications, Allison Kimberly Freese

MSU Graduate Theses

Nanoparticles have become very useful as delivery systems in biomedicine. The nanoparticles can be layered with different compounds to produce a vessel for transport of biological materials. Specifically, gold nanoparticles layered with a reducing agent, lysozyme, and polyelectrolytes can be synthesized to transport lysozyme into a cell. However, zinc oxide nanoparticles are cheaper, biocompatible nanoparticles that can be used for the same process. Here in, zinc oxide nanoparticle conjugates were synthesized, modified, and analyzed to be used as a biological material delivery system. The zinc oxide nanoparticles were synthesized using zinc chloride and sodium hydroxide. The particles were then layered ...


Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho May 2019

Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho

Philippe T. Georgel

Transcription in the human immunodeficiency virus type 1 (HIV-1) retrovirus is regulated by binding the viral Tat protein (trans-acting transcriptional activator) to the trans-activation response (TAR) RNA sequence. Here, vacuum UV circular dichroism (VUV-CD) is used to study the structure of TAR and its complex with two peptide fragments that are important for Tat binding to TAR. The VUV-CD spectrum of TAR is typical of A-form RNA and is minimally perturbed when bound to either the short or the long Tat peptide. The CD spectra ofthe complexes indicate an extended structure in the argnine-rich region of Tat from amino acid ...


The Worlds Of Splicing And Chromatin Collide, J. Adam Hall, Philippe T. Georgel May 2019

The Worlds Of Splicing And Chromatin Collide, J. Adam Hall, Philippe T. Georgel

Philippe T. Georgel

Both transcription and splicing take place in a nuclear environment which, at face value, may seem refractory to the efficiency afforded by the coupling of both processes. This environment, chromatin, was once viewed as only a passive packaging system for genetic material, with very little contribution to the variety of nuclear activities occurring within and around it. However, overwhelming evidence now points to the chromatin environment as being highly dynamic, and an active player in nuclear activities.


Effect Of Turmeric On The Promoter Activity Of The Cyp6a8 Gene Of Drosophila Melanogaster, Alexa Stroh May 2019

Effect Of Turmeric On The Promoter Activity Of The Cyp6a8 Gene Of Drosophila Melanogaster, Alexa Stroh

Chancellor’s Honors Program Projects

No abstract provided.


Biotransformation Of Natural Antioxidants Osajin And Pomiferin By Cunninghamella Elegans (Atcc® 9245tm), Stephen Luis May 2019

Biotransformation Of Natural Antioxidants Osajin And Pomiferin By Cunninghamella Elegans (Atcc® 9245tm), Stephen Luis

Theses & Dissertations

Osajin and pomiferin, prenylated isoflavones extracted from the fruit of the osage orange tree (Maclura pomifera) have been reported as antioxidant compounds. The purpose of this study is to analyze the metabolization of osajin and pomiferin by the fungi Cunninghamella elegans (ATCC 9245) and supporting strains Umbelopsis ramanniana and Aspergillus fumigatus fresnius.

HPLC analysis of the extracts showed new, more polar compounds were formed, evidenced by peaks at lower retention times for each strain of fungi. To further investigate the metabolites produced, HPLC-guided chromatographic purification will be performed, and the pure metabolites will be analyzed through nuclear magnetic resonance and ...


Pre-Administration Of Medium Chain Triglycerides In Vivo Can Attenuate Or Block The Effects Of Recurrent Hypoglycemia, Dhanisha Nandigama May 2019

Pre-Administration Of Medium Chain Triglycerides In Vivo Can Attenuate Or Block The Effects Of Recurrent Hypoglycemia, Dhanisha Nandigama

Biological Sciences

Hypoglycemia is a state of abnormally low blood glucose. Many patients who use insulin, primarily for the treatment of diabetes, experience multiple bouts of hypoglycemia, termed recurrent hypoglycemia (RH). Because RH impairs cognitive function and ability to appropriately respond to a subsequent episode of hypoglycemia, it is critical to develop treatments. One approach, which we have taken here, is to attempt to preserve neuronal fuel supply during a hypoglycemic episode. Medium-chain triglycerides are medium-chain fatty acid (MCT) esters of glycerol that can provide an alternative fuel source to the brain via ketones; the hippocampus is known to express transporters for ...


The Effect Of Cysteine-Reactive Catechol Antioxidants On Alcohol Dehydrogenase As A Model For Oxidative Stress In Neurodegenerative Disease, Rachel Smith May 2019

The Effect Of Cysteine-Reactive Catechol Antioxidants On Alcohol Dehydrogenase As A Model For Oxidative Stress In Neurodegenerative Disease, Rachel Smith

Undergraduate Honors Theses

The cellular mechanisms underlying age-related neurodegeneration, especially in disease states, are poorly understood. Oxidative stress has been heavily implicated as one factor both produced by and contributing to the progression of neurodegenerative diseases such as Alzheimer’s disease. In particular, it can destroy a cell’s ability to produce energy through aerobic and anaerobic respiration, thus leading to the death of individual cells and brain tissues as a whole. This study focuses on the relationship between oxidative stress and energy production in disease states. In particular, we examine the ability of catechol molecules to take on pro-oxidative properties and modify ...


Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu May 2019

Targeting Sec61Α By Ipomoeassin F Leads To Highly Cytotoxic Effect, Zhijian Hu

Theses and Dissertations

Ipomoeassin F is a flagship congener of a resin glycoside family that inhibits growth of many tumor cell lines with only single-digital nanomolar IC50 values. However, biological and pharmacological mechanisms of ipomoeassin F have been undefined. To facilitate exploration of the biological and pharmacological properties, we performed sophisticate SAR (Structure–activity relationship) studies of ipomoeassin F to understand its pharmacophore and structure properties so that we can design favorable probes for further biological investigation. By applying appropriate deviates that possess fluorescent groups and similar bio-activity, the target protein was found to be localized in endoplasmic reticulum (ER). Through biotin affinity ...


The Effects Of Eicosapentaenoic Acid (Epa) And Docosahexaenoic Acid (Dha) On Brown Adipogenesis In Stem Cell Culture, Darynne Dahlem May 2019

The Effects Of Eicosapentaenoic Acid (Epa) And Docosahexaenoic Acid (Dha) On Brown Adipogenesis In Stem Cell Culture, Darynne Dahlem

Animal Science Undergraduate Honors Theses

Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are major maternal dietary supplements due to their positive benefits on neurological tissue growth during the first 12 weeks of gestation. Previous studies show that EPA and DHA inhibit muscle formation but promote adipogenesis. However, no research has addressed the question whether high intake of EPA and DHA affects brown fat development during gestation. The objective of this study was to measure the effect of EPA and DHA supplement on brown adipogenesis and potential pathways related to mitochondrial biosynthesis using fibroblasts as in vitro model. Using Oil-Red-O staining ...


Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman May 2019

Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman

Open Access Articles

Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-kappaB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.


The Effects Of Ultraviolet Light Exposure On The Activity Of Catalase In The Coelomocytes Of Sea Urchins Lytechinus Variegatus And Arbacia Punctulata, Kandis Arlinghaus Apr 2019

The Effects Of Ultraviolet Light Exposure On The Activity Of Catalase In The Coelomocytes Of Sea Urchins Lytechinus Variegatus And Arbacia Punctulata, Kandis Arlinghaus

Undergraduate Theses

Many sea urchins play important ecological roles in their environments, and it is important to study the impacts of environmental stressors on their physiology. Ultraviolet radiation (UVR) exposure has significant negative impacts on marine organisms including an increase in reactive oxygen species (ROS). Oxidative damage by ROS at the cellular level can cause lipid peroxidation, DNA fragmentation, and even cell death that may result in inflammation or disease. To prevent this cellular damage, organisms generate enzymes, such as catalase, that breakdown ROS into harmless substances. Elevated catalase activities under UVB, a range of UVR from 280–315 nm, exposure have ...


Sir3-Dependent Assembly Of Supramolecular Chromatin Structures In Vitro, Philippe T. Georgel, Madeleine A. Palacios Debeer, Gregory Pietz, Catherine A. Fox, Jeffrey C. Hansen Apr 2019

Sir3-Dependent Assembly Of Supramolecular Chromatin Structures In Vitro, Philippe T. Georgel, Madeleine A. Palacios Debeer, Gregory Pietz, Catherine A. Fox, Jeffrey C. Hansen

Philippe T. Georgel

Baculovirus-expressed recombinant Sir3p (rSir3p) has been purified to near homogeneity, and its binding to naked DNA, mononucleosomes, and nucleosomal arrays has been characterized in vitro. At stoichiometric levels rSir3p interacts with intact nucleosomal arrays, mononucleosomes, and naked DNA, as evidenced by formation of supershifted species on native agarose gels. Proteolytic removal of the core histone tail domains inhibits but does not completely abolish rSir3p binding to nucleosomal arrays. The linker DNA in the supershifted complexes remains freely accessible to restriction endonuclease digestion, suggesting that both the tail domains and nucleosomal DNA contribute to rSir3p–chromatin interactions. Together these data indicate ...


Studying The Effects Of Electronic Cigarette Exposure On Dna Mutation And Repair In Tetrahymena Thermophila, Tianna Sell, Katie Huisman, Matt F. Kvech Apr 2019

Studying The Effects Of Electronic Cigarette Exposure On Dna Mutation And Repair In Tetrahymena Thermophila, Tianna Sell, Katie Huisman, Matt F. Kvech

Carroll College Student Undergraduate Research Festival

The purpose of our experiment was to answer the question: Does exposure to aerosols expelled from an electronic cigarette affect the APN2 gene expression in Tetrahymena thermophila? It was hypothesized that the expression of APN2 would increase in Tetrahymena that were exposed to aerosol from a vape and that their growth rate would decrease. The mechanism and function of the APN2 gene is known as base excision repair. To test the hypothesis, Tetrahymena were randomly assigned to either a control group or a test group. A contraption was created to extract 12mL of aerosol from a Smok Baby Beast vape ...