Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Biochemistry, Biophysics, and Structural Biology

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 1234

Full-Text Articles in Life Sciences

Titus Thesis Figures.Docx, Titus Hou May 2020

Titus Thesis Figures.Docx, Titus Hou

Titus Hou

No abstract provided.


Titus Thesis.Docx, Titus Hou May 2020

Titus Thesis.Docx, Titus Hou

Titus Hou

No abstract provided.


Quantification Of Free Sialic Acid In Human Plasma Through A Robust Quinoxalinone Derivatization And Lc–Ms/Ms Using Isotope-Labeled Standard Calibration, Dan Wang, Xiang Zhou, Lin Wang, Sihe Wang, Xue-Long Sun Nov 2019

Quantification Of Free Sialic Acid In Human Plasma Through A Robust Quinoxalinone Derivatization And Lc–Ms/Ms Using Isotope-Labeled Standard Calibration, Dan Wang, Xiang Zhou, Lin Wang, Sihe Wang, Xue-Long Sun

Xue-Long Sun

We report an accurate quantification of free sialic acid (SA) in human plasma using LC–MS/MS method with isotope-labeled standard calibration (ILSC) and robust derivatization. Specifically, derivatization of SA with a stable and inexpensive 3,4-diaminotoluene (DAT) provides a stable product of SA with high MS response, proving a convenient and cost-effective LC–MS/MS analysis of free SA. In addition, the use of 13C3-SA as calibration standard ensured the accuracy for the measurement. This assay used ultra high performance liquid chromatography (UHPLC) for separation of native/labeled SA and IS from matrix interference, and employed ...


N-Glycosylation In The Protease Domain Of Trypsin-Like Serine Proteases Mediates Calnexin-Assisted Protein Folding, Hao Wang, Shuo Li, Juejin Wang, Shenghan Chen, Xue-Long Sun, Qingyu Wu Nov 2019

N-Glycosylation In The Protease Domain Of Trypsin-Like Serine Proteases Mediates Calnexin-Assisted Protein Folding, Hao Wang, Shuo Li, Juejin Wang, Shenghan Chen, Xue-Long Sun, Qingyu Wu

Xue-Long Sun

Trypsin-like serine proteases are essential in physiological processes. Studies have shown that N-glycans are important for serine protease expression and secretion, but the underlying mechanisms are poorly understood. Here, we report a common mechanism of N-glycosylation in the protease domains of corin, enteropeptidase and prothrombin in calnexin-mediated glycoprotein folding and extracellular expression. This mechanism, which is independent of calreticulin and operates in a domain-autonomous manner, involves two steps: direct calnexin binding to target proteins and subsequent calnexin binding to monoglucosylated N-glycans. Elimination of N-glycosylation sites in the protease domains of corin, enteropeptidase and prothrombin inhibits corin and enteropeptidase cell surface ...


Bsa–Boronic Acid Conjugate As Lectin Mimetics, Satya Nandana Narla, Poornima Pinnamaneni, Huan Nie, Yu Li, Xue-Long Sun Nov 2019

Bsa–Boronic Acid Conjugate As Lectin Mimetics, Satya Nandana Narla, Poornima Pinnamaneni, Huan Nie, Yu Li, Xue-Long Sun

Xue-Long Sun

We report bovine serum albumin (BSA)–boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA–BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS–PAGE gel. The BSA–BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA–BA conjugates was conducted by immobilizing BSA–BA onto SPR gold ...


Multi-Dimensional Glycan Microarrays With Glyco-Macroligands, Satya Nandana Narla, Huan Nie, Yu Li, Xue-Long Sun Nov 2019

Multi-Dimensional Glycan Microarrays With Glyco-Macroligands, Satya Nandana Narla, Huan Nie, Yu Li, Xue-Long Sun

Xue-Long Sun

Glycan microarray has become a powerful high-throughput tool for examining binding interactions of carbohydrates with the carbohydrate binding biomolecules like proteins, enzymes, antibodies etc. It has shown great potential for biomedical research and applications, such as antibody detection and profiling, vaccine development, biomarker discovery, and drug screening. Most glycan microarrays were made with monovalent glycans immobilized directly onto the array surface via either covalent or non-covalent bond, which afford a multivalent glycans in two dimensional (2D) displaying. A variety of glyco-macroligands have been developed to mimic multivalent carbohydrate-protein interactions for studying carbohydrate-protein interactions and biomedical research and applications. Recently, a ...


Pot1‐Independent Single‐Strand Telomeric Dna Binding Activities In Brassicaceae, Eugene V. Shakirov, Thomas D. Mcknight, Dorothy E. Shippen Nov 2019

Pot1‐Independent Single‐Strand Telomeric Dna Binding Activities In Brassicaceae, Eugene V. Shakirov, Thomas D. Mcknight, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single‐strand protrusion, termed the G‐overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1‐like proteins. Here we show that the single‐strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins ...


Selaginella Moellendorffii Telomeres: Conserved And Unique Features In An Ancient Land Plant Lineage, Eugene V. Shakirov, Dorothy E. Shippen Oct 2019

Selaginella Moellendorffii Telomeres: Conserved And Unique Features In An Ancient Land Plant Lineage, Eugene V. Shakirov, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeres, the essential terminal regions of linear eukaryotic chromosomes, consist of G-rich DNA repeats bound by a plethora of associated proteins. While the general pathways of telomere maintenance are evolutionarily conserved, individual telomere complex components show remarkable variation between eukaryotic lineages and even within closely related species. The recent genome sequencing of the lycophyte Selaginella moellendorffii and the availability of an ever-increasing number of flowering plant genomes provides a unique opportunity to evaluate the molecular and functional evolution of telomere components from the early evolving non-seed plants to the more developmentally advanced angiosperms. Here we analyzed telomere sequence in S ...


Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen Oct 2019

Pot1 Proteins In Green Algae And Land Plants: Dna-Binding Properties And Evidence Of Co-Evolution With Telomeric Dna, Eugene V. Shakirov, Xiangyu Song, Jessica A. Joseph, Dorothy E. Shippen

Yevgeniy (Eugene) Shakirov

Telomeric DNA terminates with a single-stranded 3′ G-overhang that in vertebrates and fission yeast is bound by POT1 (Protection Of Telomeres). However, no in vitro telomeric DNA binding is associated with Arabidopsis POT1 paralogs. To further investigate POT1–DNA interaction in plants, we cloned POT1 genes from 11 plant species representing major branches of plant kingdom. Telomeric DNA binding was associated with POT1 proteins from the green alga Ostreococcus lucimarinus and two flowering plants, maize and Asparagus. Site-directed mutagenesis revealed that several residues critical for telomeric DNA recognition in vertebrates are functionally conserved in plant POT1 proteins. However, the plant ...


Heterologous Expression Of Pantoea Agglomerans Phytase Gene Optimized For Plant-Host Expression, N. N. Khabipova, L. R. Valeeva, I. B. Chastukhina, M. R. Sharipova, Eugene V. Shakirov Oct 2019

Heterologous Expression Of Pantoea Agglomerans Phytase Gene Optimized For Plant-Host Expression, N. N. Khabipova, L. R. Valeeva, I. B. Chastukhina, M. R. Sharipova, Eugene V. Shakirov

Yevgeniy (Eugene) Shakirov

Here we report expression and characterization of recombinant bacterial phytase PaPhyC from Pantoea sp. Codon-optimized phytase gene was expressed E.coli BL21 pLysS and protein expression was confirmed by Western blotting. Recombinant protein expressed in E.coli has high phytase activity. We show that PaPhyC recombinant phytase has different molecular masses when expressed in bacteria and plants, suggesting that possible protein glycosylation in plants may influence its overall size.


Promises And Challenges Of Eco-Physiological Genomics In The Field: Tests Of Drought Responses In Switchgrass. Plant Physiology, John T. Lovell, Eugene V. Shakirov, Scott Schwartz, David B. Lowry, Michael J. Aspinwall, Samuel H. Taylor, Jason Bonnette, Juan Diego Palacio-Mejia, Christine V. Hawkes, Philip A. Fay, Thomas E. Juenger Oct 2019

Promises And Challenges Of Eco-Physiological Genomics In The Field: Tests Of Drought Responses In Switchgrass. Plant Physiology, John T. Lovell, Eugene V. Shakirov, Scott Schwartz, David B. Lowry, Michael J. Aspinwall, Samuel H. Taylor, Jason Bonnette, Juan Diego Palacio-Mejia, Christine V. Hawkes, Philip A. Fay, Thomas E. Juenger

Yevgeniy (Eugene) Shakirov

Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene expression responses ...


Drought Responsive Gene Expression Regulatory Divergence Between Upland And Lowland Ecotypes Of A Perennial C4 Grass, John T. Lovell, Scott Schwartz, David B. Lowry, Eugene V. Shakirov, Jason E. Bonnette, Xiaoyu Weng, Mei Wang, Jenifer Johnson, Avinash Sreedasyam, Christopher Plott, Jerry Jenkins, Jeremy Schmutz, Thomas E. Juenger Oct 2019

Drought Responsive Gene Expression Regulatory Divergence Between Upland And Lowland Ecotypes Of A Perennial C4 Grass, John T. Lovell, Scott Schwartz, David B. Lowry, Eugene V. Shakirov, Jason E. Bonnette, Xiaoyu Weng, Mei Wang, Jenifer Johnson, Avinash Sreedasyam, Christopher Plott, Jerry Jenkins, Jeremy Schmutz, Thomas E. Juenger

Yevgeniy (Eugene) Shakirov

Climatic adaptation is an example of a genotype-by-environment interaction (G×E) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression G×E are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C4 grass, Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit ...


Heterologous Expression Of Secreted Bacterial Bpp And Hap Phytases In Plants Stimulates Arabidopsis Thaliana Growth On Phytate., Lia R. Valeeva, Chuluuntsetseg Nyamsuren, Margarita R. Sharipova, Eugene V. Shakirov Oct 2019

Heterologous Expression Of Secreted Bacterial Bpp And Hap Phytases In Plants Stimulates Arabidopsis Thaliana Growth On Phytate., Lia R. Valeeva, Chuluuntsetseg Nyamsuren, Margarita R. Sharipova, Eugene V. Shakirov

Yevgeniy (Eugene) Shakirov

Phytases are specialized phosphatases capable of releasing inorganic phosphate from myo-inositol hexakisphosphate (phytate), which is highly abundant in many soils. As inorganic phosphorus reserves decrease over time in many agricultural soils, genetic manipulation of plants to enable secretion of potent phytases into the rhizosphere has been proposed as a promising approach to improve plant phosphorus nutrition. Several families of biotechnologically important phytases have been discovered and characterized, but little data are available on which phytase families can offer the most benefits toward improving plant phosphorus intake. We have developed transgenic Arabidopsis thaliana plants expressing bacterial phytases PaPhyC (HAP family ...


Microbial Phytases And Phytate: Exploring Opportunities For Sustainable Phosphorus Management In Agriculture, Nelly P. Balaban, Aliya D. Suleimanova, Lia R. Valeeva, Inna B. Chastukhina, Natalia L. Rudakova, Margarita R. Sharipova, Eugene V. Shakirov Oct 2019

Microbial Phytases And Phytate: Exploring Opportunities For Sustainable Phosphorus Management In Agriculture, Nelly P. Balaban, Aliya D. Suleimanova, Lia R. Valeeva, Inna B. Chastukhina, Natalia L. Rudakova, Margarita R. Sharipova, Eugene V. Shakirov

Yevgeniy (Eugene) Shakirov

Myo-inositol phosphates (phytates) are important biological molecules produced largely by plants to store phosphorus. Phytate is very abundant in many different soils making up a large portion of all soil phosphorus. This review assesses current phytase science from the perspective of its substrate, phytate, by examining the intricate relationship between the phytate-hydrolyzing enzymes and phytate as their substrate. Specifically, we examine available data on phytate’s structural features, distribution in nature and functional roles. The role of phytases and their localization in soil and plant tissues are evaluated. We provide a summary of the current biotechnological advances in using ...


Synthesis And Evaluation Of Novel Silica Hydride-Based Stationary Phases For Bioanalytical Applications Sep 2019

Synthesis And Evaluation Of Novel Silica Hydride-Based Stationary Phases For Bioanalytical Applications

Seiichiro Watanabe

Most HPLC columns are packed with silanol (Si-OH)-rich type-B silica that often
participates in undesired electrostatic interactions with sample solutes and produces a poor analyte peak shape. These silanols are also known to facilitate the surface hydration required for HILIC mode to retain polar analytes. However, the hydrated surface composition can easily fluctuate, which results in poor reproducibility and requires a lengthy equilibration step. In this study, four novel stationary phases have been developed by using the TYPE-CTM silica material, in which up to 95% of the surface silanols have been replaced with Si-H group. One of the advantages ...


Characterization Of The Role Of Alpha-Arylphorin In The Heliothis Virescens Midgut Response To Cry1ac Toxin From Bacillus Thuringiensis, Jerreme Jamael Jackson Sep 2019

Characterization Of The Role Of Alpha-Arylphorin In The Heliothis Virescens Midgut Response To Cry1ac Toxin From Bacillus Thuringiensis, Jerreme Jamael Jackson

Jerreme Jackson

Homeostasis of the intestinal epithelium in Heliothis virescens is mediated by the proliferation and differentiation of multipotent intestinal stem cells (ISCs) that lie adjacent to the basal lamina. In response to extrinsic and intrinsic signals, ISC proliferation and differentiation promotes epithelial growth and regeneration following the loss of integrity. We tested the in vivo effects of the ISC mitogen, a [alpha]-arylphorin, on ISC proliferation and the morphological changes of the midgut during larval development. Additionally, we examined how these changes affected the intestinal epithelium response to Cry1Ac toxin from Bacillus thuringiensis. Histological and in vitro evidence supported two distinct ...


Genetic Control Of A Central Pattern Generator: Rhythmic Oromotor Movement In Mice Is Controlled By A Major Locus Near Atp1a2, Steven J. St. John, John D. Boughter Jr, Megan K. Mulligan, Kenichi Tokita, Lu Lu, Detlef H. Heck, Robert W. Williams Sep 2019

Genetic Control Of A Central Pattern Generator: Rhythmic Oromotor Movement In Mice Is Controlled By A Major Locus Near Atp1a2, Steven J. St. John, John D. Boughter Jr, Megan K. Mulligan, Kenichi Tokita, Lu Lu, Detlef H. Heck, Robert W. Williams

Lu Lu

calreticulin, Animals, Chromosome Mapping, Mammalian Chromosomes, Gene Expression Regulation, Genetic Linkage, Genome-Wide Association Study. Inbred C57BL Mice, Inbred DBA Mice, Quantitative Trait Loci, Sodium-Potassium-Exchanging ATPase/genetics, Atp1a2 protein, Sodium-Potassium-Exchanging ATPase, feeding behavior, drinking behavior, mice, central pattern generator, genetic control


Janani Subramaniam Thesis.Pdf, Janani Subramaniam Aug 2019

Janani Subramaniam Thesis.Pdf, Janani Subramaniam

Janani Subramaniam

Distinctly organized domains of receptors, ion channels, transporters, signaling molecules, cell adhesion molecules, and contractile proteins are crucial to cardiac function. Interactions between adaptor proteins such as ankyrins and cytoskeletal proteins such as obscurin play a pivotal role in organizing these functional domains in cardiomyocytes. Therefore, dysfunction of both ankyrin as well as obscurin lead to a host of cardiovascular diseases such as arrhythmias and cardiomyopathies. Alternative splicing of ankyrin yields numerous isoforms that interact with obscurin at various sub-cellular domains. And while some of these obscurin-ankyrin complexes have been studied, many others have not been characterized. Further, previous studies ...


Impact Of Obesity On Ovotoxicity Induced By 7,12-Dimethylbenz[A]Anthracene In Mice, Jackson Nteeba, Shanthi Ganesan, Aileen F. Keating Jul 2019

Impact Of Obesity On Ovotoxicity Induced By 7,12-Dimethylbenz[A]Anthracene In Mice, Jackson Nteeba, Shanthi Ganesan, Aileen F. Keating

Aileen Keating

Insulin, elevated during obesity, regulates xenobiotic biotransformation enzymes, potentially through phosphatidylinositol 3-kinase (PI3K) signaling, in extraovarian tissues. PI3K regulates oocyte viability, follicular activation, and ovarian chemical biotransformation. 7,12-Dimethylbenz[a]anthracene (DMBA), a carcinogen and ovotoxicant, destroys all stages of follicles, leading to premature ovarian failure. Obesity has been reported to promote DMBA-induced tumors, but it remains unknown whether obesity affects ovarian xenobiotic metabolism. Therefore, we investigated ovarian expression of xenobiotic metabolism genes—microsomal epoxide hydrolase (Ephx1), glutathione S-transferase (GST) class Pi (Gstp1) and class mu 1 (Gstm1), and PI3K-signaling members (protein kinase B [AKT] alpha [Akt1], beta [Akt2], and ...


Glutathione S-Transferase Class Mu Regulation Of Apoptosis Signal-Regulating Kinase 1 Protein During Vcd-Induced Ovotoxicity In Neonatal Rat Ovaries, Poulomi Bhattacharya, Jill A. Madden, Nivedita Sen, Patricia B. Hoyer, Aileen F. Keating Jul 2019

Glutathione S-Transferase Class Mu Regulation Of Apoptosis Signal-Regulating Kinase 1 Protein During Vcd-Induced Ovotoxicity In Neonatal Rat Ovaries, Poulomi Bhattacharya, Jill A. Madden, Nivedita Sen, Patricia B. Hoyer, Aileen F. Keating

Aileen Keating

4-vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-related kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also ...


Arca Controls Metabolism, Chemotaxis, And Motility Contributing To The Pathogenicity Of Avian Pathogenic Escherichia Coli, Fengwei Jiang, Chunxia An, Yinli Bao, Xuefeng Zhao, Robert L. Jernigan, Andrew Lithio, Dan Nettleton, Ling Li, Eve S. Wurtele, Lisa K. Nolan, Chengping Lu, Ganwu Li Jun 2019

Arca Controls Metabolism, Chemotaxis, And Motility Contributing To The Pathogenicity Of Avian Pathogenic Escherichia Coli, Fengwei Jiang, Chunxia An, Yinli Bao, Xuefeng Zhao, Robert L. Jernigan, Andrew Lithio, Dan Nettleton, Ling Li, Eve S. Wurtele, Lisa K. Nolan, Chengping Lu, Ganwu Li

Dan Nettleton

Avian pathogenic Escherichia coli (APEC) strains cause one of the three most significant infectious diseases in the poultry industry and are also potential food-borne pathogens threating human health. In this study, we showed that ArcA (aerobic respiratory control), a global regulator important for E. coli's adaptation from anaerobic to aerobic conditions and control of that bacterium's enzymatic defenses against reactive oxygen species (ROS), is involved in the virulence of APEC. Deletion of arcA significantly attenuates the virulence of APEC in the duck model. Transcriptome sequencing (RNA-Seq) analyses comparing the APEC wild type and the arcA mutant indicate that ...


Structure-Based Design Of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses To A Conserved Epitope, Brian G. Pierce, Elisabeth N. Boucher, Kurt H. Piepenbrink, Ejemel Monir, Chelsea A. Rapp, William D. Thomas Jr., Eric J. Sundberg, Zhiping Weng, Yan Wang Jun 2019

Structure-Based Design Of Hepatitis C Virus Vaccines That Elicit Neutralizing Antibody Responses To A Conserved Epitope, Brian G. Pierce, Elisabeth N. Boucher, Kurt H. Piepenbrink, Ejemel Monir, Chelsea A. Rapp, William D. Thomas Jr., Eric J. Sundberg, Zhiping Weng, Yan Wang

Kurt Piepenbrink

Despite recent advances in therapeutic options, hepatitis C virus (HCV) remains a severe global disease burden, and a vaccine can substantially reduce its incidence. Due to its extremely high sequence variability, HCV can readily escape the immune response; thus, an effective vaccine must target conserved, functionally important epitopes. Using the structure of a broadly neutralizing antibody in complex with a conserved linear epitope from the HCV E2 envelope glycoprotein (residues 412 to 423; epitope I), we performed structure-based design of immunogens to induce antibody responses to this epitope. This resulted in epitope-based immunogens based on a cyclic defensin protein, as ...


Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. Van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede Jun 2019

Some Of The Most Interesting Casp11 Targets Through The Eyes Of Their Authors, Andriy Kryshtafovych, John Moult, Arnaud Basle, Alex Burgin, Timonthy K. Craig, Robert A. Edwards, Deborah Fass, Marcus D. Hartmann, Mateusz Korycinski, Richard J. Lewis, Donald Lorimer, Andrei N. Lupas, Janet Newman, Thomas S. Peat, Kurt H. Piepenbrink, Janani Prahlad, Mark J. Van Raaij, Forest Rohwer, Anca M. Segall, Victor Seguritan, Eric J. Sundberg, Abhimanyu K. Singh, Mark A. Wilson, Torsten Schwede

Kurt Piepenbrink

The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11.


Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink Jun 2019

Dna Uptake By Type Iv Filaments, Kurt H. Piepenbrink

Kurt Piepenbrink

Bacterial uptake of DNA through type IV filaments is an essential component of natural competence in numerous gram-positive and gram-negative species. Recent advances in the field have broadened our understanding of the structures used to take up extracellular DNA. Here, we review seminal experiments in the literature describing DNA binding by type IV pili, competence pili and the flp pili of Micrococcus luteus; collectively referred to here as type IV filaments. We compare the current state of the field on mechanisms of DNA uptake for these three appendage systems and describe the current mechanistic understanding of both DNA-binding and DNA-uptake ...


Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman Jun 2019

Regulation Of The Drosophila Imd Pathway By Signaling Amyloids, Anni Kleino, Neal S. Silverman

Neal Silverman

Fruit flies elicit effective defense responses against numerous microbes. The responses against Gram-negative bacteria are mediated by the Imd pathway, an evolutionarily conserved NF-kappaB pathway recognizing meso-diaminopimelic acid (DAP)-type peptidoglycan from bacterial cell walls. Several reviews already provide a detailed view of ligand recognition and signal transduction during Imd signaling, but the formation and regulation of the signaling complex immediately downstream of the peptidoglycan-sensing receptors is still elusive. In this review, we focus on the formation of the Imd amyloidal signaling center and post-translational modifications in the assembly and disassembly of the Imd signaling complex.


Bridging From Intramuscular To Limb Perfusion Delivery Of Raav: Optimization In A Non-Human Primate Study, Alisha Gruntman, Gwladys Gernoux, Qiushi Tang, Guo-Jie Ye, Dave R. Knop, Gensheng Wang, Janet Benson, Kristen E. Coleman, Allison M. Keeler, Christian Mueller, Louis G. Chicoine, Jeffrey D. Chulay, Terence R. Flotte May 2019

Bridging From Intramuscular To Limb Perfusion Delivery Of Raav: Optimization In A Non-Human Primate Study, Alisha Gruntman, Gwladys Gernoux, Qiushi Tang, Guo-Jie Ye, Dave R. Knop, Gensheng Wang, Janet Benson, Kristen E. Coleman, Allison M. Keeler, Christian Mueller, Louis G. Chicoine, Jeffrey D. Chulay, Terence R. Flotte

Christian Mueller

Phase 1 and phase 2 gene therapy trials using intramuscular (IM) administration of a recombinant adeno-associated virus serotype 1 (rAAV1) for replacement of serum alpha-1 antitrypsin (AAT) deficiency have shown long-term (5-year) stable transgene expression at approximately 2% to 3% of therapeutic levels, arguing for the long-term viability of this approach to gene replacement of secreted serum protein deficiencies. However, achieving these levels required 100 IM injections to deliver 135 mL of vector, and further dose escalation is limited by the scalability of direct IM injection. To further advance the dose escalation, we sought to bridge the rAAV-AAT clinical development ...


Synthesis And Evaluation Of Novel Silica Hydride-Based Stationary Phases For Bioanalytical Application, Seiichiro Watanabe May 2019

Synthesis And Evaluation Of Novel Silica Hydride-Based Stationary Phases For Bioanalytical Application, Seiichiro Watanabe

Seiichiro Watanabe

Most HPLC columns are packed with silanol-rich (Si-OH) type-B silica material that often participates in undesired electrostatic interactions with the analyte solutes and produces poor peak shape [1,2]. These silanols are also known to facilitate surface hydration necessary for HILIC retention mode for polar analyte molecules. However, the hydrated surface composition can easily fluctuate, and thus results in a poor reproducibility and requires lengthy equilibration step. In this study, four novel stationary phases have been developed by using the TYPE-CTM Silica Hydride material, which has replaced up to 95% of the surface silanols with silicon-hydride (Si-H) groups. One of ...


Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho May 2019

Circular Dichroism And Molecular Modeling Yield A Structure For The Complex Of Human Immunodeficiency Virus Type 1 Trans-Activation Response Rna And The Binding Region Of Tat, The Trans-Acting Transcriptional Activator, Erwann P. Loret, Philippe T. Georgel, W. Curtis Johnson Jr., Pui Shing Ho

Philippe T. Georgel

Transcription in the human immunodeficiency virus type 1 (HIV-1) retrovirus is regulated by binding the viral Tat protein (trans-acting transcriptional activator) to the trans-activation response (TAR) RNA sequence. Here, vacuum UV circular dichroism (VUV-CD) is used to study the structure of TAR and its complex with two peptide fragments that are important for Tat binding to TAR. The VUV-CD spectrum of TAR is typical of A-form RNA and is minimally perturbed when bound to either the short or the long Tat peptide. The CD spectra ofthe complexes indicate an extended structure in the argnine-rich region of Tat from amino acid ...


Biotransformation Of Praziquantel By Cunninghamella Elegans, Umbelopsis Ramanniana, And Yarrowia Lipolytica Metabolism, Samuel Chivers May 2019

Biotransformation Of Praziquantel By Cunninghamella Elegans, Umbelopsis Ramanniana, And Yarrowia Lipolytica Metabolism, Samuel Chivers

Samuel Chivers

No abstract provided.


The Worlds Of Splicing And Chromatin Collide, J. Adam Hall, Philippe T. Georgel May 2019

The Worlds Of Splicing And Chromatin Collide, J. Adam Hall, Philippe T. Georgel

Philippe T. Georgel

Both transcription and splicing take place in a nuclear environment which, at face value, may seem refractory to the efficiency afforded by the coupling of both processes. This environment, chromatin, was once viewed as only a passive packaging system for genetic material, with very little contribution to the variety of nuclear activities occurring within and around it. However, overwhelming evidence now points to the chromatin environment as being highly dynamic, and an active player in nuclear activities.