Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Life Sciences

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do Jan 2012

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do

Jeffrey S. Morris

Motivation: Analyzing data from multi-platform genomics experiments combined with patients’ clinical outcomes helps us understand the complex biological processes that characterize a disease, as well as how these processes relate to the development of the disease. Current integration approaches that treat the data are limited in that they do not consider the fundamental biological relationships that exist among the data from platforms.

Statistical Model: We propose an integrative Bayesian analysis of genomics data (iBAG) framework for identifying important genes/biomarkers that are associated with clinical outcome. This framework uses a hierarchical modeling technique to combine the data obtained from multiple ...


Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler Feb 2008

Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler

Jeffrey S. Morris

Proteomics, the large-scale study of protein expression in organisms, offers the potential to evaluate global changes in protein expression and their post-translational modifications that take place in response to normal or pathological stimuli. One challenge has been the requirement for substantial amounts of tissue in order to perform comprehensive proteomic characterization. In heterogeneous tissues, such as brain, this has limited the application of proteomic methodologies. Efforts to adapt standard methods of tissue sampling, protein extraction, arraying, and identification are reviewed, with an emphasis on those appropriate to smaller samples ranging in size from several microliters down to single cells. The ...


Statistical Issues In Proteomic Research, Jeffrey S. Morris Dec 2007

Statistical Issues In Proteomic Research, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris Jan 2007

Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris Jan 2007

Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris

Jeffrey S. Morris

Proteomics holds the promise of evaluating global changes in protein expression and post-translational modificaiton in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for ...


Alternative Probeset Definitions For Combining Microarray Data Across Studies Using Different Versions Of Affymetrix Oligonucleotide Arrays, Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly, Jing Wang, Li Zhang Dec 2006

Alternative Probeset Definitions For Combining Microarray Data Across Studies Using Different Versions Of Affymetrix Oligonucleotide Arrays, Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly, Jing Wang, Li Zhang

Jeffrey S. Morris

Many published microarray studies have small to moderate sample sizes, and thus have low statistical power to detect significant relationships between gene expression levels and outcomes of interest. By pooling data across multiple studies, however, we can gain power, enabling us to detect new relationships. This type of pooling is complicated by the fact that gene expression measurements from different microarray platforms are not directly comparable. In this chapter, we discuss two methods for combining information across different versions of Affymetrix oligonucleotide arrays. Each involves a new approach for combining probes on the array into probesets. The first approach involves ...


Prepms: Tof Ms Data Graphical Preprocessing Tool, Yuliya V. Karpievitch, Elizabeth G. Hill, Adam J. Smolka, Jeffrey S. Morris, Kevin R. Coombes, Keith A. Baggerly, Jonas S. Almeida Nov 2006

Prepms: Tof Ms Data Graphical Preprocessing Tool, Yuliya V. Karpievitch, Elizabeth G. Hill, Adam J. Smolka, Jeffrey S. Morris, Kevin R. Coombes, Keith A. Baggerly, Jonas S. Almeida

Jeffrey S. Morris

We introduce a simple-to-use graphical tool that enables researchers to easily prepare time-of-flight mass spectrometry data for analysis. For ease of use, the graphical executable provides default parameter settings experimentally determined to work well in most situations. These values can be changed by the user if desired. PrepMS is a stand-alone application made freely available (open source), and is under the General Public License (GPL). Its graphical user interface, default parameter settings, and display plots allow PrepMS to be used effectively for data preprocessing, peak detection, and visual data quality assessment.


Some Statistical Issues In Microarray Gene Expression Data, Matthew S. Mayo, Byron J. Gajewski, Jeffrey S. Morris Jun 2006

Some Statistical Issues In Microarray Gene Expression Data, Matthew S. Mayo, Byron J. Gajewski, Jeffrey S. Morris

Jeffrey S. Morris

In this paper we discuss some of the statistical issues that should be considered when conducting experiments involving microarray gene expression data. We discuss statistical issues related to preprocessing the data as well as the analysis of the data. Analysis of the data is discussed in three contexts: class comparison, class prediction and class discovery. We also review the methods used in two studies that are using microarray gene expression to assess the effect of exposure to radiofrequency (RF) fields on gene expression. Our intent is to provide a guide for radiation researchers when conducting studies involving microarray gene expression ...


Shrinkage Estimation For Sage Data Using A Mixture Dirichlet Prior, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes Mar 2006

Shrinkage Estimation For Sage Data Using A Mixture Dirichlet Prior, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes

Jeffrey S. Morris

Serial Analysis of Gene Expression (SAGE) is a technique for estimating the gene expression profile of a biological sample. Any efficient inference in SAGE must be based upon efficient estimates of these gene expression profiles, which consist of the estimated relative abundances for each mRNA species present in the sample. The data from SAGE experiments are counts for each observed mRNA species, and can be modeled using a multinomial distribution with two characteristics: skewness in the distribution of relative abundances and small sample size relative to the dimension. As a result of these characteristics, a given SAGE sample will fail ...


An Introduction To High-Throughput Bioinformatics Data, Keith A. Baggerly, Kevin R. Coombes, Jeffrey S. Morris Mar 2006

An Introduction To High-Throughput Bioinformatics Data, Keith A. Baggerly, Kevin R. Coombes, Jeffrey S. Morris

Jeffrey S. Morris

High throughput biological assays supply thousands of measurements per sample, and the sheer amount of related data increases the need for better models to enhance inference. Such models, however, are more effective if they take into account the idiosyncracies associated with the specific methods of measurement: where the numbers come from. We illustrate this point by describing three different measurement platforms: microarrays, serial analysis of gene expression (SAGE), and proteomic mass spectrometry.


Bayesian Mixture Models For Gene Expression And Protein Profiles, Michele Guindani, Kim-Anh Do, Peter Mueller, Jeffrey S. Morris Mar 2006

Bayesian Mixture Models For Gene Expression And Protein Profiles, Michele Guindani, Kim-Anh Do, Peter Mueller, Jeffrey S. Morris

Jeffrey S. Morris

We review the use of semi-parametric mixture models for Bayesian inference in high throughput genomic data. We discuss three specific approaches for microarray data, for protein mass spectrometry experiments, and for SAGE data. For the microarray data and the protein mass spectrometry we assume group comparison experiments, i.e., experiments that seek to identify genes and proteins that are differentially expressed across two biologic conditions of interest. For the SAGE data example we consider inference for a single biologic sample.


Analysis Of Mass Spectrometry Data Using Bayesian Wavelet-Based Functional Mixed Models, Jeffrey S. Morris, Philip J. Brown, Keith A. Baggerly, Kevin R. Coombes Mar 2006

Analysis Of Mass Spectrometry Data Using Bayesian Wavelet-Based Functional Mixed Models, Jeffrey S. Morris, Philip J. Brown, Keith A. Baggerly, Kevin R. Coombes

Jeffrey S. Morris

In this chapter, we demonstrate how to analyze MALDI-TOF/SELDITOF mass spectrometry data using the wavelet-based functional mixed model introduced by Morris and Carroll (2006), which generalizes the linear mixed models to the case of functional data. This approach models each spectrum as a function, and is very general, accommodating a broad class of experimental designs and allowing one to model nonparametric functional effects for various factors, which can be conditions of interest (e.g. cancer/normal) or experimental factors (blocking factors). Inference on these functional effects allows us to identify protein peaks related to various outcomes of interest, including ...


Improved Peak Detection And Quantification Of Mass Spectrometry Data Acquired From Surface-Enhanced Laser Desorption And Ionization By Denoising Spectra With The Undecimated Discrete Wavelet Transform, Kevin R. Coombes, Spiros Tsavachidis, Jeffrey S. Morris, Keith A. Baggerly, Henry M. Kuerer Dec 2005

Improved Peak Detection And Quantification Of Mass Spectrometry Data Acquired From Surface-Enhanced Laser Desorption And Ionization By Denoising Spectra With The Undecimated Discrete Wavelet Transform, Kevin R. Coombes, Spiros Tsavachidis, Jeffrey S. Morris, Keith A. Baggerly, Henry M. Kuerer

Jeffrey S. Morris

Background: Mass spectrometry, especially surface enhanced laser desorption and ionization (SELDI) is increasingly being used to find disease-related proteomic patterns in complex mixtures of proteins derived from tissue samples or from easily obtained biological fluids such as serum, urine, or nipple aspirate fluid. Questions have been raised about the reproducibility and reliability of peak quantifications using this technology. For example, Yasui and colleagues opted to replace continuous measures of the size of a peak by a simple binary indicator of its presence or absence in their analysis of a set of spectra from prostate cancer patients.

Methods: We collected nipple ...


Pooling Information Across Different Studies And Oligonucleotide Microarray Chip Types To Identify Prognostic Genes For Lung Cancer., Jeffrey S. Morris, Guosheng Yin, Keith A. Baggerly, Chunlei Wu, Li Zhang Dec 2005

Pooling Information Across Different Studies And Oligonucleotide Microarray Chip Types To Identify Prognostic Genes For Lung Cancer., Jeffrey S. Morris, Guosheng Yin, Keith A. Baggerly, Chunlei Wu, Li Zhang

Jeffrey S. Morris

Our goal in this work is to pool information across microarray studies conducted at different institutions using two different versions of Affymetrix chips to identify genes whose expression levels offer information on lung cancer patients’ survival above and beyond the information provided by readily available clinical covariates. We combine information across chip types by identifying “matching probes” present on both chips, and then assembling them into new probesets based on Unigene clusters. This method yields comparable expression level quantifications across chips without sacrificing much precision or significantly altering the relative ordering of the samples. We fit a series of multivariable ...


The Importance Of Experimental Design In Proteomic Mass Spectrometry Experiments: Some Cautionary Tales, Jeffrey S. Morris, Jianhua Hu, Kevin R. Coombes, Keith A. Baggerly Mar 2005

The Importance Of Experimental Design In Proteomic Mass Spectrometry Experiments: Some Cautionary Tales, Jeffrey S. Morris, Jianhua Hu, Kevin R. Coombes, Keith A. Baggerly

Jeffrey S. Morris

Proteomic expression patterns derived from mass spectrometry have been put forward as potential biomarkers for the early diagnosis of cancer and other diseases. This approach has generated much excitement and has led to a large number of new experiments and vast amounts of new data. The data, derived at great expense, can have very little value if careful attention is not paid to the experimental design and analysis. Using examples from surfaceenhanced laser desorption/ionisation time-of-flight (SELDI-TOF) and matrix-assisted laser desorption–ionisation/time-of-flight (MALDI-TOF) experiments, we describe several experimental design issues that can corrupt a dataset. Fortunately, the problems we ...


Serum Proteomics Profiling: A Young Technology Begins To Mature, Kevin R. Coombes, Jeffrey S. Morris, Jianhua Hu, Sarah R. Edmondson, Keith A. Baggerly Mar 2005

Serum Proteomics Profiling: A Young Technology Begins To Mature, Kevin R. Coombes, Jeffrey S. Morris, Jianhua Hu, Sarah R. Edmondson, Keith A. Baggerly

Jeffrey S. Morris

No abstract provided.


Signal In Noise: Evaluating Reported Reproducibility Of Serum Proteomic Tests For Ovarian Cancer, Keith A. Baggerly, Jeffrey S. Morris, Sarah R. Edmonson, Kevin R. Coombes Feb 2005

Signal In Noise: Evaluating Reported Reproducibility Of Serum Proteomic Tests For Ovarian Cancer, Keith A. Baggerly, Jeffrey S. Morris, Sarah R. Edmonson, Kevin R. Coombes

Jeffrey S. Morris

Proteomic profi ling of serum initially appeared to be dramatically effective for diagnosis of early-stage ovarian cancer, but these results have proven diffi cult to reproduce. A recent publication reported good classifi cation in one dataset using results from training on a much earlier dataset, but the authors have since reported that they did not perform the analysis as described. We examined the reproducibility of the proteomic patterns across datasets in more detail. Our analysis reveals that the pattern that enabled successful classifi cation is biologically implausible and that the method, properly applied, does not classify the data accurately. We ...


High-Resolution Serum Proteomic Patterns For Ovarian Cancer Detection, Keith A. Baggerly, Sarah R. Edmonson, Jeffrey S. Morris, Kevin R. Coombes Nov 2004

High-Resolution Serum Proteomic Patterns For Ovarian Cancer Detection, Keith A. Baggerly, Sarah R. Edmonson, Jeffrey S. Morris, Kevin R. Coombes

Jeffrey S. Morris

No abstract provided.


Quality Control And Peak Finding For Proteomics Data Collected From Nipple Aspirate Fluid Using Surface Enhanced Laser Desorption And Ionization., Jeffrey S. Morris, Kevin R. Coombes, Herbert A. Fritsche, Charlotte Clarke, Jeng-Neng Chen, Keith A. Baggerly, Lian-Chun Xiao, Mien-Chie Hung, Henry M. Kuerer Oct 2003

Quality Control And Peak Finding For Proteomics Data Collected From Nipple Aspirate Fluid Using Surface Enhanced Laser Desorption And Ionization., Jeffrey S. Morris, Kevin R. Coombes, Herbert A. Fritsche, Charlotte Clarke, Jeng-Neng Chen, Keith A. Baggerly, Lian-Chun Xiao, Mien-Chie Hung, Henry M. Kuerer

Jeffrey S. Morris

Background: Recently, researchers have been using mass spectroscopy to study cancer. For use of proteomics spectra in a clinical setting, stringent quality-control procedures will be needed.

Methods: We pooled samples of nipple aspirate fluid from healthy breasts and breasts with cancer to prepare a control sample. Aliquots of the control sample were used on two spots on each of three IMAC ProteinChip® arrays (Ciphergen Biosystems, Inc.) on 4 successive days to generate 24 SELDI spectra. In 36 subsequent experiments, the control sample was applied to two spots of each ProteinChip array, and the resulting spectra were analyzed to determine how ...


A Comprehensive Approach To The Analysis Of Maldi-Tof Proteomics Spectra From Serum Samples., Keith A. Baggerly, Jeffrey S. Morris, Jing Wang, David Gold, Lian-Chun Xiao, Kevin R. Coombes Jun 2003

A Comprehensive Approach To The Analysis Of Maldi-Tof Proteomics Spectra From Serum Samples., Keith A. Baggerly, Jeffrey S. Morris, Jing Wang, David Gold, Lian-Chun Xiao, Kevin R. Coombes

Jeffrey S. Morris

For our analysis of the data from the First Annual Proteomics Data Mining Conference, we attempted to discriminate between 24 disease spectra (group A) and 17 normal spectra (group B). First, we processed the raw spectra by (i) correcting for additive sinusoidal noise (periodic on the time scale) affecting most spectra, (ii) correcting for the overall baseline level, (iii) normalizing, (iv) recombining fractions, and (v) using variable- width windows for data reduction. Also, we identified a set of polymeric peaks (at multiples of 180.6 Da) that is present in several normal spectra (B1–B8). After data processing, we found ...


Bayesian Shrinkage Estimation Of The Relative Abundance Of Mrna Transcripts Using Sage, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes Mar 2003

Bayesian Shrinkage Estimation Of The Relative Abundance Of Mrna Transcripts Using Sage, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes

Jeffrey S. Morris

Serial analysis of gene expression (SAGE) is a technology for quantifying gene expression in biological tissue that yields count data that can be modeled by a multinomial distribution with two characteristics: skewness in the relative frequencies and small sample size relative to the dimension. As a result of these characteristics, a given SAGE sample may fail to capture a large number of expressed mRNA species present in the tissue. Empirical estimators of mRNA species’ relative abundance effectively ignore these missing species, and as a result tend to overestimate the abundance of the scarce observed species comprising a vast majority of ...