Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Bioinformatics

Bioinformatics

2006

Articles 1 - 1 of 1

Full-Text Articles in Life Sciences

Integrative Missing Value Estimation For Microarray Data, Jianjun Hu, H. Li, M. S. Waterman, X. J. Zhou Jan 2006

Integrative Missing Value Estimation For Microarray Data, Jianjun Hu, H. Li, M. S. Waterman, X. J. Zhou

Faculty Publications

Background

Missing value estimation is an important preprocessing step in microarray analysis. Although several methods have been developed to solve this problem, their performance is unsatisfactory for datasets with high rates of missing data, high measurement noise, or limited numbers of samples. In fact, more than 80% of the time-series datasets in Stanford Microarray Database contain less than eight samples.

Results

We present the integrative Missing Value Estimation method (iMISS) by incorporating information from multiple reference microarray datasets to improve missing value estimation. For each gene with missing data, we derive a consistent neighbor-gene list by taking reference data sets ...