Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Massachusetts Medical School

Cellular and Molecular Physiology

C. elegans

Open Access Articles

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

A Persistence Detector For Metabolic Network Rewiring In An Animal, Jote T. Bulcha, Gabrielle E. Giese, Zulfikar Ali, Yong-Uk Lee, Melissa D. Walker, Amy D. Holdorf, L. Safak Yilmaz, Robert C. Brewster, Albertha J. M. Walhout Jan 2019

A Persistence Detector For Metabolic Network Rewiring In An Animal, Jote T. Bulcha, Gabrielle E. Giese, Zulfikar Ali, Yong-Uk Lee, Melissa D. Walker, Amy D. Holdorf, L. Safak Yilmaz, Robert C. Brewster, Albertha J. M. Walhout

Open Access Articles

Biological systems must possess mechanisms that prevent inappropriate responses to spurious environmental inputs. Caenorhabditis elegans has two breakdown pathways for the short-chain fatty acid propionate: a canonical, vitamin B12-dependent pathway and a propionate shunt that is used when vitamin B12 levels are low. The shunt pathway is kept off when there is sufficient flux through the canonical pathway, likely to avoid generating shunt-specific toxic intermediates. Here, we discovered a transcriptional regulatory circuit that activates shunt gene expression upon propionate buildup. Nuclear hormone receptor 10 (NHR-10) and NHR-68 function together as a "persistence detector" in a type 1, coherent feed-forward loop ...


The Caenorhabditis Elegans Oxidative Stress Response Requires The Nhr-49 Transcription Factor, Queenie Hu, Dayana R. D'Amora, Lesley T. Macneil, Albertha J. M. Walhout, Terrance J. Kubiseski Dec 2018

The Caenorhabditis Elegans Oxidative Stress Response Requires The Nhr-49 Transcription Factor, Queenie Hu, Dayana R. D'Amora, Lesley T. Macneil, Albertha J. M. Walhout, Terrance J. Kubiseski

Open Access Articles

The overproduction of reactive oxygen species (ROS) in cells can lead to the development of diseases associated with aging. We have previously shown that C. elegans BRAP-2 (Brca1 associated binding protein 2) regulates phase II detoxification genes such as gst-4, by increasing SKN-1 activity. Previously, a transcription factor (TF) RNAi screen was conducted to identify potential activators that are required to induce gst-4 expression in brap-2(ok1492) mutants. The lipid metabolism regulator NHR-49/HNF4 was among 18 TFs identified. Here, we show that knockdown of nhr-49 suppresses the activation of gst-4 caused by brap-2 inactivation and that gain-of-function alleles of ...


Hlh-30/Tfeb-Mediated Autophagy Functions In A Cell-Autonomous Manner For Epithelium Intrinsic Cellular Defense Against Bacterial Pore-Forming Toxin In C. Elegans, Huan-Da Chen, Raffi V. Aroian, Chang-Shi Chen Feb 2017

Hlh-30/Tfeb-Mediated Autophagy Functions In A Cell-Autonomous Manner For Epithelium Intrinsic Cellular Defense Against Bacterial Pore-Forming Toxin In C. Elegans, Huan-Da Chen, Raffi V. Aroian, Chang-Shi Chen

Open Access Articles

Autophagy is an evolutionarily conserved intracellular system that maintains cellular homeostasis by degrading and recycling damaged cellular components. The transcription factor HLH-30/TFEB-mediated autophagy has been reported to regulate tolerance to bacterial infection, but less is known about the bona fide bacterial effector that activates HLH-30 and autophagy. Here, we reveal that bacterial membrane pore-forming toxin (PFT) induces autophagy in an HLH-30-dependent manner in Caenorhabditis elegans. Moreover, autophagy controls the susceptibility of animals to PFT toxicity through xenophagic degradation of PFT and repair of membrane-pore cell-autonomously in the PFT-targeted intestinal cells in C. elegans. These results demonstrate that autophagic pathways ...


A Gene-Centered C. Elegans Protein-Dna Interaction Network Provides A Framework For Functional Predictions, Juan Fuxman Bass, Carles Pons, Lucie Kozlowski, John S. Reece-Hoyes, Shaleen Shrestha, Amy D. Holdorf, Akihiro Mori, Chad L. Myers, Albertha J. M. Walhout Oct 2016

A Gene-Centered C. Elegans Protein-Dna Interaction Network Provides A Framework For Functional Predictions, Juan Fuxman Bass, Carles Pons, Lucie Kozlowski, John S. Reece-Hoyes, Shaleen Shrestha, Amy D. Holdorf, Akihiro Mori, Chad L. Myers, Albertha J. M. Walhout

Open Access Articles

Transcription factors (TFs) play a central role in controlling spatiotemporal gene expression and the response to environmental cues. A comprehensive understanding of gene regulation requires integrating physical protein-DNA interactions (PDIs) with TF regulatory activity, expression patterns, and phenotypic data. Although great progress has been made in mapping PDIs using chromatin immunoprecipitation, these studies have only characterized ~10% of TFs in any metazoan species. The nematode C. elegans has been widely used to study gene regulation due to its compact genome with short regulatory sequences. Here, we delineated the largest gene-centered metazoan PDI network to date by examining interactions between 90 ...