Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Optogenetic Control Of Voltage-Gated Calcium Channels, Guolin Ma, Jindou Liu, Yuepeng Ke, Xin Liu, Minyong Li, Fen Wang, Gang Han, Yun Huang, Youjun Wang, Yubin Zhou Mar 2018

Optogenetic Control Of Voltage-Gated Calcium Channels, Guolin Ma, Jindou Liu, Yuepeng Ke, Xin Liu, Minyong Li, Fen Wang, Gang Han, Yun Huang, Youjun Wang, Yubin Zhou

Biochemistry and Molecular Pharmacology Publications and Presentations

Voltage-gated Ca(2+) (CaV ) channels mediate Ca(2+) entry into excitable cells to regulate a myriad of cellular events following membrane depolarization. We report the engineering of RGK GTPases, a class of genetically encoded CaV channel modulators, to enable photo-tunable modulation of CaV channel activity in excitable mammalian cells. This optogenetic tool (designated optoRGK) tailored for CaV channels could find broad applications in interrogating a wide range of CaV -mediated physiological processes.


Calmodulation Meta-Analysis: Predicting Calmodulin Binding Via Canonical Motif Clustering, Karen Mruk, Brian M. Farley, Alan W. Ritacco, William R. Kobertz Jun 2014

Calmodulation Meta-Analysis: Predicting Calmodulin Binding Via Canonical Motif Clustering, Karen Mruk, Brian M. Farley, Alan W. Ritacco, William R. Kobertz

Biochemistry and Molecular Pharmacology Publications and Presentations

The calcium-binding protein calmodulin (CaM) directly binds to membrane transport proteins to modulate their function in response to changes in intracellular calcium concentrations. Because CaM recognizes and binds to a wide variety of target sequences, identifying CaM-binding sites is difficult, requiring intensive sequence gazing and extensive biochemical analysis. Here, we describe a straightforward computational script that rapidly identifies canonical CaM-binding motifs within an amino acid sequence. Analysis of the target sequences from high resolution CaM-peptide structures using this script revealed that CaM often binds to sequences that have multiple overlapping canonical CaM-binding motifs. The addition of a positive charge discriminator ...


Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang Jan 2014

Evolution Of The Influenza A Virus Genome During Development Of Oseltamivir Resistance In Vitro, Nicholas Renzette, Daniel R. Caffrey, Konstantin B. Zeldovich, Ping Liu, Glen R. Gallagher, Daniel Aiello, Alyssa J. Porter, Evelyn A. Kurt-Jones, Daniel N. Bolon, Yu-Ping Poh, Jeffrey D. Jensen, Celia A. Schiffer, Timothy F. Kowalik, Robert W. Finberg, Jennifer P. Wang

Biochemistry and Molecular Pharmacology Publications and Presentations

Influenza A virus (IAV) is a major cause of morbidity and mortality throughout the world. Current antiviral therapies include oseltamivir, a neuraminidase inhibitor that prevents the release of nascent viral particles from infected cells. However, the IAV genome can evolve rapidly, and oseltamivir resistance mutations have been detected in numerous clinical samples. Using an in vitro evolution platform and whole-genome population sequencing, we investigated the population genomics of IAV during the development of oseltamivir resistance. Strain A/Brisbane/59/2007 (H1N1) was grown in Madin-Darby canine kidney cells with or without escalating concentrations of oseltamivir over serial passages. Following drug ...