Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Life Sciences

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris Jan 2016

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris

Jeffrey S. Morris

We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on ...


Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull Jan 2015

Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull

Jeffrey S. Morris

Current methods for conducting expression Quantitative Trait Loci (eQTL) analysis are limited in scope to a pairwise association testing between a single nucleotide polymorphism (SNPs) and expression probe set in a region around a gene of interest, thus ignoring the inherent between-SNP correlation. To determine association, p-values are then typically adjusted using Plug-in False Discovery Rate. As many SNPs are interrogated in the region and multiple probe-sets taken, the current approach requires the fitting of a large number of models. We propose to remedy this by introducing a flexible function-on-scalar regression that models the genome as a functional outcome. The ...


A Study Of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Modeling Of Nonstationary Time Series Data With Time-Dependent Spectra, Josue G. Martinez, Kirsten M. Bohn, Raymond J. Carroll, Jeffrey S. Morris Feb 2013

A Study Of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Modeling Of Nonstationary Time Series Data With Time-Dependent Spectra, Josue G. Martinez, Kirsten M. Bohn, Raymond J. Carroll, Jeffrey S. Morris

Jeffrey S. Morris

We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to ...


Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris Jan 2012

Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris

Jeffrey S. Morris

In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational ...


Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull Jan 2010

Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull

Jeffrey S. Morris

Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient ...


Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris Jan 2010

Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris

Jeffrey S. Morris

Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number ...


Statistical Issues In Proteomic Research, Jeffrey S. Morris Dec 2007

Statistical Issues In Proteomic Research, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Wavelet-Based Functional Mixed Models To Characterize Population Heterogeneity In Accelerometer Profiles: A Case Study. , Jeffrey S. Morris, Cassandra Arroyo, Brent A. Coull, Louise M. Ryan, Steven L. Gortmaker Dec 2006

Wavelet-Based Functional Mixed Models To Characterize Population Heterogeneity In Accelerometer Profiles: A Case Study. , Jeffrey S. Morris, Cassandra Arroyo, Brent A. Coull, Louise M. Ryan, Steven L. Gortmaker

Jeffrey S. Morris

We present a case study illustrating the challenges of analyzing accelerometer data taken from a sample of children participating in an intervention study designed to increase physical activity. An accelerometer is a small device worn on the hip that records the minute-by-minute activity levels of the child throughout the day for each day it is worn. The resulting data are irregular functions characterized by many peaks representing short bursts of intense activity. We model these data using the wavelet-based functional mixed model. This approach incorporates multiple fixed effects and random effect functions of arbitrary form, the estimates of which are ...


Analysis Of Mass Spectrometry Data Using Bayesian Wavelet-Based Functional Mixed Models, Jeffrey S. Morris, Philip J. Brown, Keith A. Baggerly, Kevin R. Coombes Mar 2006

Analysis Of Mass Spectrometry Data Using Bayesian Wavelet-Based Functional Mixed Models, Jeffrey S. Morris, Philip J. Brown, Keith A. Baggerly, Kevin R. Coombes

Jeffrey S. Morris

In this chapter, we demonstrate how to analyze MALDI-TOF/SELDITOF mass spectrometry data using the wavelet-based functional mixed model introduced by Morris and Carroll (2006), which generalizes the linear mixed models to the case of functional data. This approach models each spectrum as a function, and is very general, accommodating a broad class of experimental designs and allowing one to model nonparametric functional effects for various factors, which can be conditions of interest (e.g. cancer/normal) or experimental factors (blocking factors). Inference on these functional effects allows us to identify protein peaks related to various outcomes of interest, including ...


Improved Peak Detection And Quantification Of Mass Spectrometry Data Acquired From Surface-Enhanced Laser Desorption And Ionization By Denoising Spectra With The Undecimated Discrete Wavelet Transform, Kevin R. Coombes, Spiros Tsavachidis, Jeffrey S. Morris, Keith A. Baggerly, Henry M. Kuerer Dec 2005

Improved Peak Detection And Quantification Of Mass Spectrometry Data Acquired From Surface-Enhanced Laser Desorption And Ionization By Denoising Spectra With The Undecimated Discrete Wavelet Transform, Kevin R. Coombes, Spiros Tsavachidis, Jeffrey S. Morris, Keith A. Baggerly, Henry M. Kuerer

Jeffrey S. Morris

Background: Mass spectrometry, especially surface enhanced laser desorption and ionization (SELDI) is increasingly being used to find disease-related proteomic patterns in complex mixtures of proteins derived from tissue samples or from easily obtained biological fluids such as serum, urine, or nipple aspirate fluid. Questions have been raised about the reproducibility and reliability of peak quantifications using this technology. For example, Yasui and colleagues opted to replace continuous measures of the size of a peak by a simple binary indicator of its presence or absence in their analysis of a set of spectra from prostate cancer patients.

Methods: We collected nipple ...