Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Jeffrey S. Morris

Discipline
Keyword
Publication Year

Articles 1 - 30 of 32

Full-Text Articles in Life Sciences

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris Jan 2016

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris

Jeffrey S. Morris

We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on ...


Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull Jan 2015

Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull

Jeffrey S. Morris

Current methods for conducting expression Quantitative Trait Loci (eQTL) analysis are limited in scope to a pairwise association testing between a single nucleotide polymorphism (SNPs) and expression probe set in a region around a gene of interest, thus ignoring the inherent between-SNP correlation. To determine association, p-values are then typically adjusted using Plug-in False Discovery Rate. As many SNPs are interrogated in the region and multiple probe-sets taken, the current approach requires the fitting of a large number of models. We propose to remedy this by introducing a flexible function-on-scalar regression that models the genome as a functional outcome. The ...


Bayesian Joint Selection Of Genes And Pathways: Applications In Multiple Myeloma Genomics, Lin Zhang, Jeffrey S. Morris, Jiexin Zhang, Robert Orlowski, Veerabhadran Baladandayuthapani Jan 2014

Bayesian Joint Selection Of Genes And Pathways: Applications In Multiple Myeloma Genomics, Lin Zhang, Jeffrey S. Morris, Jiexin Zhang, Robert Orlowski, Veerabhadran Baladandayuthapani

Jeffrey S. Morris

It is well-established that the development of a disease, especially cancer, is a complex process that results from the joint effects of multiple genes involved in various molecular signaling pathways. In this article, we propose methods to discover genes and molecular pathways significantly associ- ated with clinical outcomes in cancer samples. We exploit the natural hierarchal structure of genes related to a given pathway as a group of interacting genes to conduct selection of both pathways and genes. We posit the problem in a hierarchical structured variable selection (HSVS) framework to analyze the corresponding gene expression data. HSVS methods conduct ...


A Study Of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Modeling Of Nonstationary Time Series Data With Time-Dependent Spectra, Josue G. Martinez, Kirsten M. Bohn, Raymond J. Carroll, Jeffrey S. Morris Feb 2013

A Study Of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Modeling Of Nonstationary Time Series Data With Time-Dependent Spectra, Josue G. Martinez, Kirsten M. Bohn, Raymond J. Carroll, Jeffrey S. Morris

Jeffrey S. Morris

We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to ...


Global Quantitative Assessment Of The Colorectal Polyp Burden In Familial Adenomatous Polyposis Using A Web-Based Tool, Patrick M. Lynch, Jeffrey S. Morris, William A. Ross, Miguel A. Rodriguez-Bigas, Juan Posadas, Rossa Khalaf, Diane M. Weber, Valerie O. Sepeda, Bernard Levin, Imad Shureiqi Jan 2013

Global Quantitative Assessment Of The Colorectal Polyp Burden In Familial Adenomatous Polyposis Using A Web-Based Tool, Patrick M. Lynch, Jeffrey S. Morris, William A. Ross, Miguel A. Rodriguez-Bigas, Juan Posadas, Rossa Khalaf, Diane M. Weber, Valerie O. Sepeda, Bernard Levin, Imad Shureiqi

Jeffrey S. Morris

Background: Accurate measures of the total polyp burden in familial adenomatous polyposis (FAP) are lacking. Current assessment tools include polyp quantitation in limited-field photographs and qualitative total colorectal polyp burden by video.

Objective: To develop global quantitative tools of the FAP colorectal adenoma burden.

Design: A single-arm, phase II trial.

Patients: Twenty-seven patients with FAP.

Intervention: Treatment with celecoxib for 6 months, with before-treatment and after-treatment videos posted to an intranet with an interactive site for scoring.

Main Outcome Measurements: Global adenoma counts and sizes (grouped into categories: less than 2 mm, 2-4 mm, and greater than 4 mm) were ...


Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris Jan 2012

Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris

Jeffrey S. Morris

In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational ...


Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do Jan 2012

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do

Jeffrey S. Morris

Motivation: Analyzing data from multi-platform genomics experiments combined with patients’ clinical outcomes helps us understand the complex biological processes that characterize a disease, as well as how these processes relate to the development of the disease. Current integration approaches that treat the data are limited in that they do not consider the fundamental biological relationships that exist among the data from platforms.

Statistical Model: We propose an integrative Bayesian analysis of genomics data (iBAG) framework for identifying important genes/biomarkers that are associated with clinical outcome. This framework uses a hierarchical modeling technique to combine the data obtained from multiple ...


Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull Jan 2010

Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull

Jeffrey S. Morris

Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient ...


Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris Jan 2010

Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris

Jeffrey S. Morris

A recent article published in The Annals of Applied Statistics (AOAS) by two MD Anderson researchers—Keith Baggerly and Kevin Coombes—dissects results from a highly-influential series of medical papers involving genomics-driven personalized cancer therapy, and outlines a series of simple yet fatal flaws that raises serious questions about the veracity of the original results. Having immediate and strong impact, this paper, along with related work, is providing the impetus for new standards of reproducibility in scientific research.


Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes Jan 2010

Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes

Jeffrey S. Morris

Proteomic profiling has the potential to impact the diagnosis, prognosis, and treatment of various diseases. A number of different proteomic technologies are available that allow us to look at many proteins at once, and all of them yield complex data that raise significant quantitative challenges. Inadequate attention to these quantitative issues can prevent these studies from achieving their desired goals, and can even lead to invalid results. In this chapter, we describe various ways the involvement of statisticians or other quantitative scientists in the study team can contribute to the success of proteomic research, and we outline some of the ...


Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang Jan 2010

Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang

Jeffrey S. Morris

Whilst recent progress in ‘shotgun’ peptide separation by integrated liquid chromatography and mass spectrometry (LC/MS) has enabled its use as a sensitive analytical technique, proteome coverage and reproducibility is still limited and obtaining enough replicate runs for biomarker discovery is a challenge. For these reasons, recent research demonstrates the continuing need for protein separation by two-dimensional gel electrophoresis (2-DE). However, with traditional 2-DE informatics, the digitized images are reduced to symbolic data though spot detection and quantification before proteins are compared for differential expression by spot matching. Recently, a more robust and automated paradigm has emerged where gels are ...


Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris Jan 2010

Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris

Jeffrey S. Morris

Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number ...


Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler Feb 2008

Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler

Jeffrey S. Morris

Proteomics, the large-scale study of protein expression in organisms, offers the potential to evaluate global changes in protein expression and their post-translational modifications that take place in response to normal or pathological stimuli. One challenge has been the requirement for substantial amounts of tissue in order to perform comprehensive proteomic characterization. In heterogeneous tissues, such as brain, this has limited the application of proteomic methodologies. Efforts to adapt standard methods of tissue sampling, protein extraction, arraying, and identification are reviewed, with an emphasis on those appropriate to smaller samples ranging in size from several microliters down to single cells. The ...


Statistical Issues In Proteomic Research, Jeffrey S. Morris Dec 2007

Statistical Issues In Proteomic Research, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris Jan 2007

Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris Jan 2007

Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris

Jeffrey S. Morris

Proteomics holds the promise of evaluating global changes in protein expression and post-translational modificaiton in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for ...


Wavelet-Based Functional Mixed Models To Characterize Population Heterogeneity In Accelerometer Profiles: A Case Study. , Jeffrey S. Morris, Cassandra Arroyo, Brent A. Coull, Louise M. Ryan, Steven L. Gortmaker Dec 2006

Wavelet-Based Functional Mixed Models To Characterize Population Heterogeneity In Accelerometer Profiles: A Case Study. , Jeffrey S. Morris, Cassandra Arroyo, Brent A. Coull, Louise M. Ryan, Steven L. Gortmaker

Jeffrey S. Morris

We present a case study illustrating the challenges of analyzing accelerometer data taken from a sample of children participating in an intervention study designed to increase physical activity. An accelerometer is a small device worn on the hip that records the minute-by-minute activity levels of the child throughout the day for each day it is worn. The resulting data are irregular functions characterized by many peaks representing short bursts of intense activity. We model these data using the wavelet-based functional mixed model. This approach incorporates multiple fixed effects and random effect functions of arbitrary form, the estimates of which are ...


Alternative Probeset Definitions For Combining Microarray Data Across Studies Using Different Versions Of Affymetrix Oligonucleotide Arrays, Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly, Jing Wang, Li Zhang Dec 2006

Alternative Probeset Definitions For Combining Microarray Data Across Studies Using Different Versions Of Affymetrix Oligonucleotide Arrays, Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly, Jing Wang, Li Zhang

Jeffrey S. Morris

Many published microarray studies have small to moderate sample sizes, and thus have low statistical power to detect significant relationships between gene expression levels and outcomes of interest. By pooling data across multiple studies, however, we can gain power, enabling us to detect new relationships. This type of pooling is complicated by the fact that gene expression measurements from different microarray platforms are not directly comparable. In this chapter, we discuss two methods for combining information across different versions of Affymetrix oligonucleotide arrays. Each involves a new approach for combining probes on the array into probesets. The first approach involves ...


Prepms: Tof Ms Data Graphical Preprocessing Tool, Yuliya V. Karpievitch, Elizabeth G. Hill, Adam J. Smolka, Jeffrey S. Morris, Kevin R. Coombes, Keith A. Baggerly, Jonas S. Almeida Nov 2006

Prepms: Tof Ms Data Graphical Preprocessing Tool, Yuliya V. Karpievitch, Elizabeth G. Hill, Adam J. Smolka, Jeffrey S. Morris, Kevin R. Coombes, Keith A. Baggerly, Jonas S. Almeida

Jeffrey S. Morris

We introduce a simple-to-use graphical tool that enables researchers to easily prepare time-of-flight mass spectrometry data for analysis. For ease of use, the graphical executable provides default parameter settings experimentally determined to work well in most situations. These values can be changed by the user if desired. PrepMS is a stand-alone application made freely available (open source), and is under the General Public License (GPL). Its graphical user interface, default parameter settings, and display plots allow PrepMS to be used effectively for data preprocessing, peak detection, and visual data quality assessment.


Some Statistical Issues In Microarray Gene Expression Data, Matthew S. Mayo, Byron J. Gajewski, Jeffrey S. Morris Jun 2006

Some Statistical Issues In Microarray Gene Expression Data, Matthew S. Mayo, Byron J. Gajewski, Jeffrey S. Morris

Jeffrey S. Morris

In this paper we discuss some of the statistical issues that should be considered when conducting experiments involving microarray gene expression data. We discuss statistical issues related to preprocessing the data as well as the analysis of the data. Analysis of the data is discussed in three contexts: class comparison, class prediction and class discovery. We also review the methods used in two studies that are using microarray gene expression to assess the effect of exposure to radiofrequency (RF) fields on gene expression. Our intent is to provide a guide for radiation researchers when conducting studies involving microarray gene expression ...


Shrinkage Estimation For Sage Data Using A Mixture Dirichlet Prior, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes Mar 2006

Shrinkage Estimation For Sage Data Using A Mixture Dirichlet Prior, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes

Jeffrey S. Morris

Serial Analysis of Gene Expression (SAGE) is a technique for estimating the gene expression profile of a biological sample. Any efficient inference in SAGE must be based upon efficient estimates of these gene expression profiles, which consist of the estimated relative abundances for each mRNA species present in the sample. The data from SAGE experiments are counts for each observed mRNA species, and can be modeled using a multinomial distribution with two characteristics: skewness in the distribution of relative abundances and small sample size relative to the dimension. As a result of these characteristics, a given SAGE sample will fail ...


An Introduction To High-Throughput Bioinformatics Data, Keith A. Baggerly, Kevin R. Coombes, Jeffrey S. Morris Mar 2006

An Introduction To High-Throughput Bioinformatics Data, Keith A. Baggerly, Kevin R. Coombes, Jeffrey S. Morris

Jeffrey S. Morris

High throughput biological assays supply thousands of measurements per sample, and the sheer amount of related data increases the need for better models to enhance inference. Such models, however, are more effective if they take into account the idiosyncracies associated with the specific methods of measurement: where the numbers come from. We illustrate this point by describing three different measurement platforms: microarrays, serial analysis of gene expression (SAGE), and proteomic mass spectrometry.


Bayesian Mixture Models For Gene Expression And Protein Profiles, Michele Guindani, Kim-Anh Do, Peter Mueller, Jeffrey S. Morris Mar 2006

Bayesian Mixture Models For Gene Expression And Protein Profiles, Michele Guindani, Kim-Anh Do, Peter Mueller, Jeffrey S. Morris

Jeffrey S. Morris

We review the use of semi-parametric mixture models for Bayesian inference in high throughput genomic data. We discuss three specific approaches for microarray data, for protein mass spectrometry experiments, and for SAGE data. For the microarray data and the protein mass spectrometry we assume group comparison experiments, i.e., experiments that seek to identify genes and proteins that are differentially expressed across two biologic conditions of interest. For the SAGE data example we consider inference for a single biologic sample.


Analysis Of Mass Spectrometry Data Using Bayesian Wavelet-Based Functional Mixed Models, Jeffrey S. Morris, Philip J. Brown, Keith A. Baggerly, Kevin R. Coombes Mar 2006

Analysis Of Mass Spectrometry Data Using Bayesian Wavelet-Based Functional Mixed Models, Jeffrey S. Morris, Philip J. Brown, Keith A. Baggerly, Kevin R. Coombes

Jeffrey S. Morris

In this chapter, we demonstrate how to analyze MALDI-TOF/SELDITOF mass spectrometry data using the wavelet-based functional mixed model introduced by Morris and Carroll (2006), which generalizes the linear mixed models to the case of functional data. This approach models each spectrum as a function, and is very general, accommodating a broad class of experimental designs and allowing one to model nonparametric functional effects for various factors, which can be conditions of interest (e.g. cancer/normal) or experimental factors (blocking factors). Inference on these functional effects allows us to identify protein peaks related to various outcomes of interest, including ...


Improved Peak Detection And Quantification Of Mass Spectrometry Data Acquired From Surface-Enhanced Laser Desorption And Ionization By Denoising Spectra With The Undecimated Discrete Wavelet Transform, Kevin R. Coombes, Spiros Tsavachidis, Jeffrey S. Morris, Keith A. Baggerly, Henry M. Kuerer Dec 2005

Improved Peak Detection And Quantification Of Mass Spectrometry Data Acquired From Surface-Enhanced Laser Desorption And Ionization By Denoising Spectra With The Undecimated Discrete Wavelet Transform, Kevin R. Coombes, Spiros Tsavachidis, Jeffrey S. Morris, Keith A. Baggerly, Henry M. Kuerer

Jeffrey S. Morris

Background: Mass spectrometry, especially surface enhanced laser desorption and ionization (SELDI) is increasingly being used to find disease-related proteomic patterns in complex mixtures of proteins derived from tissue samples or from easily obtained biological fluids such as serum, urine, or nipple aspirate fluid. Questions have been raised about the reproducibility and reliability of peak quantifications using this technology. For example, Yasui and colleagues opted to replace continuous measures of the size of a peak by a simple binary indicator of its presence or absence in their analysis of a set of spectra from prostate cancer patients.

Methods: We collected nipple ...


Pooling Information Across Different Studies And Oligonucleotide Microarray Chip Types To Identify Prognostic Genes For Lung Cancer., Jeffrey S. Morris, Guosheng Yin, Keith A. Baggerly, Chunlei Wu, Li Zhang Dec 2005

Pooling Information Across Different Studies And Oligonucleotide Microarray Chip Types To Identify Prognostic Genes For Lung Cancer., Jeffrey S. Morris, Guosheng Yin, Keith A. Baggerly, Chunlei Wu, Li Zhang

Jeffrey S. Morris

Our goal in this work is to pool information across microarray studies conducted at different institutions using two different versions of Affymetrix chips to identify genes whose expression levels offer information on lung cancer patients’ survival above and beyond the information provided by readily available clinical covariates. We combine information across chip types by identifying “matching probes” present on both chips, and then assembling them into new probesets based on Unigene clusters. This method yields comparable expression level quantifications across chips without sacrificing much precision or significantly altering the relative ordering of the samples. We fit a series of multivariable ...


Serum Proteomics Profiling: A Young Technology Begins To Mature, Kevin R. Coombes, Jeffrey S. Morris, Jianhua Hu, Sarah R. Edmondson, Keith A. Baggerly Mar 2005

Serum Proteomics Profiling: A Young Technology Begins To Mature, Kevin R. Coombes, Jeffrey S. Morris, Jianhua Hu, Sarah R. Edmondson, Keith A. Baggerly

Jeffrey S. Morris

No abstract provided.


Signal In Noise: Evaluating Reported Reproducibility Of Serum Proteomic Tests For Ovarian Cancer, Keith A. Baggerly, Jeffrey S. Morris, Sarah R. Edmonson, Kevin R. Coombes Feb 2005

Signal In Noise: Evaluating Reported Reproducibility Of Serum Proteomic Tests For Ovarian Cancer, Keith A. Baggerly, Jeffrey S. Morris, Sarah R. Edmonson, Kevin R. Coombes

Jeffrey S. Morris

Proteomic profi ling of serum initially appeared to be dramatically effective for diagnosis of early-stage ovarian cancer, but these results have proven diffi cult to reproduce. A recent publication reported good classifi cation in one dataset using results from training on a much earlier dataset, but the authors have since reported that they did not perform the analysis as described. We examined the reproducibility of the proteomic patterns across datasets in more detail. Our analysis reveals that the pattern that enabled successful classifi cation is biologically implausible and that the method, properly applied, does not classify the data accurately. We ...


High-Resolution Serum Proteomic Patterns For Ovarian Cancer Detection, Keith A. Baggerly, Sarah R. Edmonson, Jeffrey S. Morris, Kevin R. Coombes Nov 2004

High-Resolution Serum Proteomic Patterns For Ovarian Cancer Detection, Keith A. Baggerly, Sarah R. Edmonson, Jeffrey S. Morris, Kevin R. Coombes

Jeffrey S. Morris

No abstract provided.


Quality Control And Peak Finding For Proteomics Data Collected From Nipple Aspirate Fluid Using Surface Enhanced Laser Desorption And Ionization., Jeffrey S. Morris, Kevin R. Coombes, Herbert A. Fritsche, Charlotte Clarke, Jeng-Neng Chen, Keith A. Baggerly, Lian-Chun Xiao, Mien-Chie Hung, Henry M. Kuerer Oct 2003

Quality Control And Peak Finding For Proteomics Data Collected From Nipple Aspirate Fluid Using Surface Enhanced Laser Desorption And Ionization., Jeffrey S. Morris, Kevin R. Coombes, Herbert A. Fritsche, Charlotte Clarke, Jeng-Neng Chen, Keith A. Baggerly, Lian-Chun Xiao, Mien-Chie Hung, Henry M. Kuerer

Jeffrey S. Morris

Background: Recently, researchers have been using mass spectroscopy to study cancer. For use of proteomics spectra in a clinical setting, stringent quality-control procedures will be needed.

Methods: We pooled samples of nipple aspirate fluid from healthy breasts and breasts with cancer to prepare a control sample. Aliquots of the control sample were used on two spots on each of three IMAC ProteinChip® arrays (Ciphergen Biosystems, Inc.) on 4 successive days to generate 24 SELDI spectra. In 36 subsequent experiments, the control sample was applied to two spots of each ProteinChip array, and the resulting spectra were analyzed to determine how ...