Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 74

Full-Text Articles in Life Sciences

Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang Jan 2010

Informatics And Statistics For Analyzing 2-D Gel Electrophoresis Images, Andrew W. Dowsey, Jeffrey S. Morris, Howard G. Gutstein, Guang Z. Yang

Jeffrey S. Morris

Whilst recent progress in ‘shotgun’ peptide separation by integrated liquid chromatography and mass spectrometry (LC/MS) has enabled its use as a sensitive analytical technique, proteome coverage and reproducibility is still limited and obtaining enough replicate runs for biomarker discovery is a challenge. For these reasons, recent research demonstrates the continuing need for protein separation by two-dimensional gel electrophoresis (2-DE). However, with traditional 2-DE informatics, the digitized images are reduced to symbolic data though spot detection and quantification before proteins are compared for differential expression by spot matching. Recently, a more robust and automated paradigm has emerged where gels are ...


Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris Jan 2010

Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris

Jeffrey S. Morris

Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number ...


Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh Jan 2010

Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh

Debashis Ghosh

In high-throughput studies involving genetic data such as from gene expression mi- croarrays, dierential expression analysis between two or more experimental conditions has been a very common analytical task. Much of the resulting literature on multiple comparisons has paid relatively little attention to the choice of test statistic. In this article, we focus on the issue of choice of test statistic based on a special pattern of dierential expression. The approach here is based on recasting multiple comparisons procedures for assessing outlying expression values. A major complication is that the resulting p-values are discrete; some theoretical properties of sequential testing ...


Detecting Outlier Genes From High-Dimensional Data: A Fuzzy Approach, Debashis Ghosh Jan 2010

Detecting Outlier Genes From High-Dimensional Data: A Fuzzy Approach, Debashis Ghosh

Debashis Ghosh

A recent nding in cancer research has been the characterization of previously undis- covered chromosomal abnormalities in several types of solid tumors. This was found based on analyses of high-throughput data from gene expression microarrays and motivated the development of so-called `outlier' tests for dierential expression. One statistical issue was the potential discreteness of the test statistics. Using ideas from fuzzy set theory, we develop fuzzy outlier detection algorithms that have links to ideas in multiple comparisons. Two- and K-sample extensions are considered. The methodology is illustrated by application to two microarray studies.


Links Between Analysis Of Surrogate Endpoints And Endogeneity, Debashis Ghosh, Jeremy M. Taylor, Michael R. Elliott Jan 2010

Links Between Analysis Of Surrogate Endpoints And Endogeneity, Debashis Ghosh, Jeremy M. Taylor, Michael R. Elliott

Debashis Ghosh

There has been substantive interest in the assessment of surrogate endpoints in medical research. These are measures which could potentially replace \true" endpoints in clinical trials and lead to studies that require less follow-up. Recent research in the area has focused on assessments using causal inference frameworks. Beginning with a simple model for associating the surrogate and true endpoints in the population, we approach the problem as one of endogenous covariates. An instrumental variables estimator and general two-stage algorithm is proposed. Existing surrogacy frameworks are then evaluated in the context of the model. A numerical example is used to illustrate ...


Meta-Analysis For Surrogacy: Accelerated Failure Time Models And Semicompeting Risks Modelling, Debashis Ghosh, Jeremy M. Taylor, Daniel J. Sargent Jan 2010

Meta-Analysis For Surrogacy: Accelerated Failure Time Models And Semicompeting Risks Modelling, Debashis Ghosh, Jeremy M. Taylor, Daniel J. Sargent

Debashis Ghosh

There has been great recent interest in the medical and statistical literature in the assessment and validation of surrogate endpoints as proxies for clinical endpoints in medical studies. More recently, authors have focused on using meta-analytical methods for quanti cation of surrogacy. In this article, we extend existing procedures for analysis based on the accelerated failure time model to this setting. An advantage of this approach relative to proportional hazards model is that it allows for analysis in the semi-competing risks setting, where we constrain the surrogate endpoint to occur before the true endpoint. A novel principal components procedure is ...


Spline-Based Models For Predictiveness Curves, Debashis Ghosh, Michael Sabel Jan 2010

Spline-Based Models For Predictiveness Curves, Debashis Ghosh, Michael Sabel

Debashis Ghosh

A biomarker is dened to be a biological characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. The use of biomarkers in cancer has been advocated for a variety of purposes, which include use as surrogate endpoints, early detection of disease, proxies for environmental exposure and risk prediction. We deal with the latter issue in this paper. Several authors have proposed use of the predictiveness curve for assessing the capacity of a biomarker for risk prediction. For most situations, it is reasonable to assume monotonicity of ...


Combining Multiple Models With Survival Data: The Phase Algorithm, Debashis Ghosh, Zheng Yuan Jan 2010

Combining Multiple Models With Survival Data: The Phase Algorithm, Debashis Ghosh, Zheng Yuan

Debashis Ghosh

In many scientic studies, one common goal is to develop good prediction rules based on a set of available measurements. This paper proposes a model averaging methodology using proportional hazards regression models to construct new estimators of predicted survival probabilities. A screening step based on an adaptive searching algorithm is used to handle large numbers of covariates. The nite-sample properties of the proposed methodology is assessed using simulation studies. Application of the method to a cancer biomarker study is also given.


Manifest Greatness Version5 By Marc Guerrero With Tato Malay, Emmanuel Mario B. Santos Aka Marc Guerrero Dec 2009

Manifest Greatness Version5 By Marc Guerrero With Tato Malay, Emmanuel Mario B. Santos Aka Marc Guerrero

Emmanuel Mario B Santos aka Marc Guerrero

MANIFEST GREATNESS version5 by Marc Guerrero with Tato Malay


Manifest Greatness Version3 By Marc Guerrero With Jay Fajardo, Emmanuel Mario B. Santos Aka Marc Guerrero Dec 2009

Manifest Greatness Version3 By Marc Guerrero With Jay Fajardo, Emmanuel Mario B. Santos Aka Marc Guerrero

Emmanuel Mario B Santos aka Marc Guerrero

MANIFEST GREATNESS version3 by Marc Guerrero with Jay Fajardo


Manifest Greatness Version2 With Danielle Van Asch-Prevot, Emmanuel Mario B. Santos Aka Marc Guerrero Dec 2009

Manifest Greatness Version2 With Danielle Van Asch-Prevot, Emmanuel Mario B. Santos Aka Marc Guerrero

Emmanuel Mario B Santos aka Marc Guerrero

MANIFEST GREATNESS version2 by Marc Guerrero with Danielle van Asch-Prevot


Manifest Greatness... Panahon Ng Mga Filipino Ang 21st Century: Ang Asian Century (Ang Pagpapanumbalik Sa Likas Na Karangalan Ng Lahat Ng Filipino Sa Buong Mundo), Emmanuel Mario B. Santos Aka Marc Guerrero Dec 2009

Manifest Greatness... Panahon Ng Mga Filipino Ang 21st Century: Ang Asian Century (Ang Pagpapanumbalik Sa Likas Na Karangalan Ng Lahat Ng Filipino Sa Buong Mundo), Emmanuel Mario B. Santos Aka Marc Guerrero

Emmanuel Mario B Santos aka Marc Guerrero

MANIFEST GREATNESS Panahon ng mga Filipino ang 21st century: Ang Asian Century (Ang pagpapanumbalik sa likas na Karangalan ng lahat ng Filipino sa buong mundo) Manifest Greatness is a work-in-progress Manifesto of, for and by Filipino citizens of the world in synergy with foreign national friends of the Filipino people worldwide in pursuit of genuine entrepreneurial wisdom


Uniqueprimer - A Web Utility For Design Of Specific Pcr Primers And Probes, Torstein Tengs Jan 2009

Uniqueprimer - A Web Utility For Design Of Specific Pcr Primers And Probes, Torstein Tengs

Dr. Torstein Tengs

We have developed a web-based tool for design of specific PCR primers and probes. The program allows you to enter primer sequence information as well as an optional probe, and sequence similarity searches (MegaBLAST) will be performed to see if the sequences match the same sequence entry in the specified database. If primers (and probe) match, this will be reported. The program can handle overlapping amplicons, amplification from a single primer, ambiguous bases and other problematic cases.


Hierarchical Hidden Markov Model With Application To Joint Analysis Of Chip-Chip And Chip-Seq Data, Hyungwon Choi, Debashis Ghosh, Zhaohui S. Qin Jan 2009

Hierarchical Hidden Markov Model With Application To Joint Analysis Of Chip-Chip And Chip-Seq Data, Hyungwon Choi, Debashis Ghosh, Zhaohui S. Qin

Debashis Ghosh

Motivation: Identication of transcription factor binding sites (TFBS) is a fundamental problem in understanding the mechanism of gene regulation. The ChIP-chip technology has accelerated this eort by providing a simultaneous genome-wide map of TFBS in a high-throughput fashion. Recently, a sequencing-based ChIP-seq has appeared as a promising alternative that can identify targets with an improved sensitivity/specicity in high resolution. However, studies have suggested that distinct experimental platforms can be complementary in TFBS identication. The availability of data obtained from multiple platforms motivates a meta-analysis for improved identication of candidate motifs.

Results: In this work, we propose a hierarchical hidden ...


A Double-Layered Mixture Model For The Joint Analysis Of Dna Copy Number And Gene Expression Data, Debashis Ghosh Jan 2009

A Double-Layered Mixture Model For The Joint Analysis Of Dna Copy Number And Gene Expression Data, Debashis Ghosh

Debashis Ghosh

Copy number aberration is a common form of genomic instability in cancer. Gene expression is closely tied to cytogenetic events by the central dogma of molecular biology, and serves as a mediator of copy number changes in disease phenotypes. Accordingly, it is of interest to develop proper statistical methods for jointly analyzing copy number and gene expression data. This work describes a novel Bayesian inferential approach for a double-layered mixture model (DLMM) which directly models the stochastic nature of copy number data and identifies abnormally expressed genes due to aberrant copy number. Simulation studies were conducted to illustrate the robustness ...


Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh Jan 2009

Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh

Debashis Ghosh

In high-throughput studies involving genetic data such as from gene expression microarrays, differential expression analysis between two or more experimental conditions has been a very common analytical task. Much of the resulting literature on multiple comparisons has paid relatively little attention to the choice of test statistic. In this article, we focus on the issue of choice of test statistic based on a special pattern of differential expression. The approach here is based on recasting multiple comparisons procedures for assessing outlying expression values. A major complication is that the resulting p-values are discrete; some theoretical properties of sequential testing procedures ...


A Double-Layered Mixture Model For The Joint Analysis Of Dna Copy Number And Gene Expression Data, Debashis Ghosh Jan 2009

A Double-Layered Mixture Model For The Joint Analysis Of Dna Copy Number And Gene Expression Data, Debashis Ghosh

Debashis Ghosh

Copy number aberration is a common form of genomic instability in cancer. Gene expression is closely tied to cytogenetic events by the central dogma of molecular biology, and serves as a mediator of copy number changes in disease phenotypes. Accordingly, it is of interest to develop proper statistical methods for jointly analyzing copy number and gene expression data. This work describes a novel Bayesian inferential approach for a double-layered mixture model (DLMM) which directly models the stochastic nature of copy number data and identifies abnormally expressed genes due to aberrant copy number. Simulation studies were conducted to illustrate the robustness ...


Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh Jan 2009

Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh

Debashis Ghosh

In high-throughput studies involving genetic data such as from gene expression microarrays, differential expression analysis between two or more experimental conditions has been a very common analytical task. Much of the resulting literature on multiple comparisons has paid relatively little attention to the choice of test statistic. In this article, we focus on the issue of choice of test statistic based on a special pattern of differential expression. The approach here is based on recasting multiple comparisons procedures for assessing outlying expression values. A major complication is that the resulting p-values are discrete; some theoretical properties of sequential testing procedures ...


A Quantitative Taqman Mgb Real-Time Polymerase Chain Reaction Based Assay For Detection Of The Causative Agent Of Crayfish Plague Aphanomyces Astaci, Torstein Tengs Jan 2009

A Quantitative Taqman Mgb Real-Time Polymerase Chain Reaction Based Assay For Detection Of The Causative Agent Of Crayfish Plague Aphanomyces Astaci, Torstein Tengs

Dr. Torstein Tengs

Here we present the development and first validation of a TaqMan minor groove binder (MGB) real-time polymerase chain reaction (RT-PCR) method for quantitative and highly specific detection of Aphanomyces astaci, the causative agent of crayfish plague. The assay specificity was experimentally assessed by testing against DNA representative of closely related oomycetes, and theoretically assessed by additional sequence similarity analyses comparing the primers and probe sequences to available sequences in EMBL/GenBank. The target of the assay is a 59 bp unique sequence motif of A. astaci found in the internal transcribed spacer 1 of the nuclear ribosomal gene cluster. A ...


Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler Feb 2008

Microproteomics: Analysis Of Protein Diversity In Small Samples, Howard B. Gutstein, Jeffrey S. Morris, Suresh P. Annangudi, Jonathan V. Sweedler

Jeffrey S. Morris

Proteomics, the large-scale study of protein expression in organisms, offers the potential to evaluate global changes in protein expression and their post-translational modifications that take place in response to normal or pathological stimuli. One challenge has been the requirement for substantial amounts of tissue in order to perform comprehensive proteomic characterization. In heterogeneous tissues, such as brain, this has limited the application of proteomic methodologies. Efforts to adapt standard methods of tissue sampling, protein extraction, arraying, and identification are reviewed, with an emphasis on those appropriate to smaller samples ranging in size from several microliters down to single cells. The ...


Using The Estimated Penetrances To Determine The Range Of The Underlying Genetic Model In Case-Control Design, Mark J. Meyer, Neal Jeffries, Gang Zheng Jan 2008

Using The Estimated Penetrances To Determine The Range Of The Underlying Genetic Model In Case-Control Design, Mark J. Meyer, Neal Jeffries, Gang Zheng

Mark J Meyer

It is well known that the penetrance cannot be estimated using the retrospective case- control samples without making additional assumptions. In the literature the estimation of the penetrance is based on the assumptions that either the disease is rare or the disease prevalence is known. We propose an alternative approach to estimate the penetrance by assuming an underlying genetic model even though it is unknown. With this assumption, we can obtain the point estimates of the penetrances as functions of the genetic model, from which the range of underlying genetic models can be determined. We examine the performance of our ...


Statistical Issues In Proteomic Research, Jeffrey S. Morris Dec 2007

Statistical Issues In Proteomic Research, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris Jan 2007

Pre-Processing Mass Spectrometry Data, Kevin R. Coombes, Keith A. Baggerly, Jeffrey S. Morris

Jeffrey S. Morris

No abstract provided.


Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris Jan 2007

Laser Capture Sampling And Analytical Issues In Proteomics, Howard Gutstein, Jeffrey S. Morris

Jeffrey S. Morris

Proteomics holds the promise of evaluating global changes in protein expression and post-translational modificaiton in response to environmental stimuli. However, difficulties in achieving cellular anatomic resolution and extracting specific types of proteins from cells have limited the efficacy of these techniques. Laser capture microdissection has provided a solution to the problem of anatomical resolution in tissues. New extraction methodologies have expanded the range of proteins identified in subsequent analyses. This review will examine the application of laser capture microdissection to proteomic tissue sampling, and subsequent extraction of these samples for differential expression analysis. Statistical and other quantitative issues important for ...


Wavelet-Based Functional Mixed Models To Characterize Population Heterogeneity In Accelerometer Profiles: A Case Study. , Jeffrey S. Morris, Cassandra Arroyo, Brent A. Coull, Louise M. Ryan, Steven L. Gortmaker Dec 2006

Wavelet-Based Functional Mixed Models To Characterize Population Heterogeneity In Accelerometer Profiles: A Case Study. , Jeffrey S. Morris, Cassandra Arroyo, Brent A. Coull, Louise M. Ryan, Steven L. Gortmaker

Jeffrey S. Morris

We present a case study illustrating the challenges of analyzing accelerometer data taken from a sample of children participating in an intervention study designed to increase physical activity. An accelerometer is a small device worn on the hip that records the minute-by-minute activity levels of the child throughout the day for each day it is worn. The resulting data are irregular functions characterized by many peaks representing short bursts of intense activity. We model these data using the wavelet-based functional mixed model. This approach incorporates multiple fixed effects and random effect functions of arbitrary form, the estimates of which are ...


Alternative Probeset Definitions For Combining Microarray Data Across Studies Using Different Versions Of Affymetrix Oligonucleotide Arrays, Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly, Jing Wang, Li Zhang Dec 2006

Alternative Probeset Definitions For Combining Microarray Data Across Studies Using Different Versions Of Affymetrix Oligonucleotide Arrays, Jeffrey S. Morris, Chunlei Wu, Kevin R. Coombes, Keith A. Baggerly, Jing Wang, Li Zhang

Jeffrey S. Morris

Many published microarray studies have small to moderate sample sizes, and thus have low statistical power to detect significant relationships between gene expression levels and outcomes of interest. By pooling data across multiple studies, however, we can gain power, enabling us to detect new relationships. This type of pooling is complicated by the fact that gene expression measurements from different microarray platforms are not directly comparable. In this chapter, we discuss two methods for combining information across different versions of Affymetrix oligonucleotide arrays. Each involves a new approach for combining probes on the array into probesets. The first approach involves ...


Prepms: Tof Ms Data Graphical Preprocessing Tool, Yuliya V. Karpievitch, Elizabeth G. Hill, Adam J. Smolka, Jeffrey S. Morris, Kevin R. Coombes, Keith A. Baggerly, Jonas S. Almeida Nov 2006

Prepms: Tof Ms Data Graphical Preprocessing Tool, Yuliya V. Karpievitch, Elizabeth G. Hill, Adam J. Smolka, Jeffrey S. Morris, Kevin R. Coombes, Keith A. Baggerly, Jonas S. Almeida

Jeffrey S. Morris

We introduce a simple-to-use graphical tool that enables researchers to easily prepare time-of-flight mass spectrometry data for analysis. For ease of use, the graphical executable provides default parameter settings experimentally determined to work well in most situations. These values can be changed by the user if desired. PrepMS is a stand-alone application made freely available (open source), and is under the General Public License (GPL). Its graphical user interface, default parameter settings, and display plots allow PrepMS to be used effectively for data preprocessing, peak detection, and visual data quality assessment.


Some Statistical Issues In Microarray Gene Expression Data, Matthew S. Mayo, Byron J. Gajewski, Jeffrey S. Morris Jun 2006

Some Statistical Issues In Microarray Gene Expression Data, Matthew S. Mayo, Byron J. Gajewski, Jeffrey S. Morris

Jeffrey S. Morris

In this paper we discuss some of the statistical issues that should be considered when conducting experiments involving microarray gene expression data. We discuss statistical issues related to preprocessing the data as well as the analysis of the data. Analysis of the data is discussed in three contexts: class comparison, class prediction and class discovery. We also review the methods used in two studies that are using microarray gene expression to assess the effect of exposure to radiofrequency (RF) fields on gene expression. Our intent is to provide a guide for radiation researchers when conducting studies involving microarray gene expression ...


Shrinkage Estimation For Sage Data Using A Mixture Dirichlet Prior, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes Mar 2006

Shrinkage Estimation For Sage Data Using A Mixture Dirichlet Prior, Jeffrey S. Morris, Keith A. Baggerly, Kevin R. Coombes

Jeffrey S. Morris

Serial Analysis of Gene Expression (SAGE) is a technique for estimating the gene expression profile of a biological sample. Any efficient inference in SAGE must be based upon efficient estimates of these gene expression profiles, which consist of the estimated relative abundances for each mRNA species present in the sample. The data from SAGE experiments are counts for each observed mRNA species, and can be modeled using a multinomial distribution with two characteristics: skewness in the distribution of relative abundances and small sample size relative to the dimension. As a result of these characteristics, a given SAGE sample will fail ...


An Introduction To High-Throughput Bioinformatics Data, Keith A. Baggerly, Kevin R. Coombes, Jeffrey S. Morris Mar 2006

An Introduction To High-Throughput Bioinformatics Data, Keith A. Baggerly, Kevin R. Coombes, Jeffrey S. Morris

Jeffrey S. Morris

High throughput biological assays supply thousands of measurements per sample, and the sheer amount of related data increases the need for better models to enhance inference. Such models, however, are more effective if they take into account the idiosyncracies associated with the specific methods of measurement: where the numbers come from. We illustrate this point by describing three different measurement platforms: microarrays, serial analysis of gene expression (SAGE), and proteomic mass spectrometry.