Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Statistics and Probability

Survival Analysis

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

A Causal Framework For Surrogate Endpoints With Semi-Competing Risks Data, Debashis Ghosh Jan 2011

A Causal Framework For Surrogate Endpoints With Semi-Competing Risks Data, Debashis Ghosh

Debashis Ghosh

In this note, we address the problem of surrogacy using a causal modelling framework that differs substantially from the potential outcomes model that pervades the biostatistical literature. The framework comes from econometrics and conceptualizes direct effects of the surrogate endpoint on the true endpoint. While this framework can incorporate the so-called semi-competing risks data structure, we also derive a fundamental non-identifiability result. Relationships to existing causal modelling frameworks are also discussed.


Meta-Analysis For Surrogacy: Accelerated Failure Time Models And Semicompeting Risks Modelling, Debashis Ghosh, Jeremy M. Taylor, Daniel J. Sargent Jan 2010

Meta-Analysis For Surrogacy: Accelerated Failure Time Models And Semicompeting Risks Modelling, Debashis Ghosh, Jeremy M. Taylor, Daniel J. Sargent

Debashis Ghosh

There has been great recent interest in the medical and statistical literature in the assessment and validation of surrogate endpoints as proxies for clinical endpoints in medical studies. More recently, authors have focused on using meta-analytical methods for quanti cation of surrogacy. In this article, we extend existing procedures for analysis based on the accelerated failure time model to this setting. An advantage of this approach relative to proportional hazards model is that it allows for analysis in the semi-competing risks setting, where we constrain the surrogate endpoint to occur before the true endpoint. A novel principal components procedure is ...


Combining Multiple Models With Survival Data: The Phase Algorithm, Debashis Ghosh, Zheng Yuan Jan 2010

Combining Multiple Models With Survival Data: The Phase Algorithm, Debashis Ghosh, Zheng Yuan

Debashis Ghosh

In many scientic studies, one common goal is to develop good prediction rules based on a set of available measurements. This paper proposes a model averaging methodology using proportional hazards regression models to construct new estimators of predicted survival probabilities. A screening step based on an adaptive searching algorithm is used to handle large numbers of covariates. The nite-sample properties of the proposed methodology is assessed using simulation studies. Application of the method to a cancer biomarker study is also given.