Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Statistics and Probability

Statistical Models

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Life Sciences

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris Jan 2016

Functional Car Models For Spatially Correlated Functional Datasets, Lin Zhang, Veerabhadran Baladandayuthapani, Hongxiao Zhu, Keith A. Baggerly, Tadeusz Majewski, Bogdan Czerniak, Jeffrey S. Morris

Jeffrey S. Morris

We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on ...


Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull Jan 2015

Ordinal Probit Wavelet-Based Functional Models For Eqtl Analysis, Mark J. Meyer, Jeffrey S. Morris, Craig P. Hersh, Jarret D. Morrow, Christoph Lange, Brent A. Coull

Jeffrey S. Morris

Current methods for conducting expression Quantitative Trait Loci (eQTL) analysis are limited in scope to a pairwise association testing between a single nucleotide polymorphism (SNPs) and expression probe set in a region around a gene of interest, thus ignoring the inherent between-SNP correlation. To determine association, p-values are then typically adjusted using Plug-in False Discovery Rate. As many SNPs are interrogated in the region and multiple probe-sets taken, the current approach requires the fitting of a large number of models. We propose to remedy this by introducing a flexible function-on-scalar regression that models the genome as a functional outcome. The ...


A Study Of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Modeling Of Nonstationary Time Series Data With Time-Dependent Spectra, Josue G. Martinez, Kirsten M. Bohn, Raymond J. Carroll, Jeffrey S. Morris Feb 2013

A Study Of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Modeling Of Nonstationary Time Series Data With Time-Dependent Spectra, Josue G. Martinez, Kirsten M. Bohn, Raymond J. Carroll, Jeffrey S. Morris

Jeffrey S. Morris

We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to ...


Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris Jan 2012

Statistical Methods For Proteomic Biomarker Discovery Based On Feature Extraction Or Functional Modeling Approaches, Jeffrey S. Morris

Jeffrey S. Morris

In recent years, developments in molecular biotechnology have led to the increased promise of detecting and validating biomarkers, or molecular markers that relate to various biological or medical outcomes. Proteomics, the direct study of proteins in biological samples, plays an important role in the biomarker discovery process. These technologies produce complex, high dimensional functional and image data that present many analytical challenges that must be addressed properly for effective comparative proteomics studies that can yield potential biomarkers. Specific challenges include experimental design, preprocessing, feature extraction, and statistical analysis accounting for the inherent multiple testing issues. This paper reviews various computational ...


Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do Jan 2012

Integrative Bayesian Analysis Of High-Dimensional Multi-Platform Genomics Data, Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju C. Manyam, Kim-Anh Do

Jeffrey S. Morris

Motivation: Analyzing data from multi-platform genomics experiments combined with patients’ clinical outcomes helps us understand the complex biological processes that characterize a disease, as well as how these processes relate to the development of the disease. Current integration approaches that treat the data are limited in that they do not consider the fundamental biological relationships that exist among the data from platforms.

Statistical Model: We propose an integrative Bayesian analysis of genomics data (iBAG) framework for identifying important genes/biomarkers that are associated with clinical outcome. This framework uses a hierarchical modeling technique to combine the data obtained from multiple ...