Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Statistics and Probability

2010

Multiple Comparisons

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh Jan 2010

Discrete Nonparametric Algorithms For Outlier Detection With Genomic Data, Debashis Ghosh

Debashis Ghosh

In high-throughput studies involving genetic data such as from gene expression mi- croarrays, dierential expression analysis between two or more experimental conditions has been a very common analytical task. Much of the resulting literature on multiple comparisons has paid relatively little attention to the choice of test statistic. In this article, we focus on the issue of choice of test statistic based on a special pattern of dierential expression. The approach here is based on recasting multiple comparisons procedures for assessing outlying expression values. A major complication is that the resulting p-values are discrete; some theoretical properties of sequential testing ...


Detecting Outlier Genes From High-Dimensional Data: A Fuzzy Approach, Debashis Ghosh Jan 2010

Detecting Outlier Genes From High-Dimensional Data: A Fuzzy Approach, Debashis Ghosh

Debashis Ghosh

A recent nding in cancer research has been the characterization of previously undis- covered chromosomal abnormalities in several types of solid tumors. This was found based on analyses of high-throughput data from gene expression microarrays and motivated the development of so-called `outlier' tests for dierential expression. One statistical issue was the potential discreteness of the test statistics. Using ideas from fuzzy set theory, we develop fuzzy outlier detection algorithms that have links to ideas in multiple comparisons. Two- and K-sample extensions are considered. The methodology is illustrated by application to two microarray studies.