Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Statistics and Probability

2010

Genomics

Jeffrey S. Morris

Articles 1 - 3 of 3

Full-Text Articles in Life Sciences

Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris Jan 2010

Members’ Discoveries: Fatal Flaws In Cancer Research, Jeffrey S. Morris

Jeffrey S. Morris

A recent article published in The Annals of Applied Statistics (AOAS) by two MD Anderson researchers—Keith Baggerly and Kevin Coombes—dissects results from a highly-influential series of medical papers involving genomics-driven personalized cancer therapy, and outlines a series of simple yet fatal flaws that raises serious questions about the veracity of the original results. Having immediate and strong impact, this paper, along with related work, is providing the impetus for new standards of reproducibility in scientific research.


Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes Jan 2010

Statistical Contributions To Proteomic Research, Jeffrey S. Morris, Keith A. Baggerly, Howard B. Gutstein, Kevin R. Coombes

Jeffrey S. Morris

Proteomic profiling has the potential to impact the diagnosis, prognosis, and treatment of various diseases. A number of different proteomic technologies are available that allow us to look at many proteins at once, and all of them yield complex data that raise significant quantitative challenges. Inadequate attention to these quantitative issues can prevent these studies from achieving their desired goals, and can even lead to invalid results. In this chapter, we describe various ways the involvement of statisticians or other quantitative scientists in the study team can contribute to the success of proteomic research, and we outline some of the ...


Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris Jan 2010

Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris

Jeffrey S. Morris

Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number ...