Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

SelectedWorks

Statistics and Probability

2010

Functional Data Analysis

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull Jan 2010

Wavelet-Based Functional Linear Mixed Models: An Application To Measurement Error–Corrected Distributed Lag Models, Elizabeth J. Malloy, Jeffrey S. Morris, Sara D. Adar, Helen Suh, Diane R. Gold, Brent A. Coull

Jeffrey S. Morris

Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient ...


Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris Jan 2010

Bayesian Random Segmentationmodels To Identify Shared Copy Number Aberrations For Array Cgh Data, Veerabhadran Baladandayuthapani, Yuan Ji, Rajesh Talluri, Luis E. Nieto-Barajas, Jeffrey S. Morris

Jeffrey S. Morris

Array-based comparative genomic hybridization (aCGH) is a high-resolution high-throughput technique for studying the genetic basis of cancer. The resulting data consists of log fluorescence ratios as a function of the genomic DNA location and provides a cytogenetic representation of the relative DNA copy number variation. Analysis of such data typically involves estimation of the underlying copy number state at each location and segmenting regions of DNA with similar copy number states. Most current methods proceed by modeling a single sample/array at a time, and thus fail to borrow strength across multiple samples to infer shared regions of copy number ...