Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

California Polytechnic State University, San Luis Obispo

Series

PDF

Paper

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Life Sciences

Characterization Of Reagent Pencils For Deposition Of Reagents Onto Paper-Based Microfluidic Devices, Cheyenne H. Liu, Isabelle C. Noxon, Leah E. Cuellar, Amanda L. Thraen, Chad Immoos, Andres W. Martinez, Philip J. Costanzo Aug 2017

Characterization Of Reagent Pencils For Deposition Of Reagents Onto Paper-Based Microfluidic Devices, Cheyenne H. Liu, Isabelle C. Noxon, Leah E. Cuellar, Amanda L. Thraen, Chad Immoos, Andres W. Martinez, Philip J. Costanzo

Chemistry and Biochemistry

Reagent pencils allow for solvent-free deposition of reagents onto paper-based microfluidic devices. The pencils are portable, easy to use, extend the shelf-life of reagents, and offer a platform for customizing diagnostic devices at the point of care. In this work, reagent pencils were characterized by measuring the wear resistance of pencil cores made from polyethylene glycols (PEGs) with different molecular weights and incorporating various concentrations of three different reagents using a standard pin abrasion test, as well as by measuring the efficiency of reagent delivery from the pencils to the test zones of paper-based microfluidic devices using absorption spectroscopy and ...


Paper-Based Diagnostic Devices, Spencer A. Schultz, Isabelle C. Noxon, Tyler A. Sisley, Andres W. Martinez Jan 2017

Paper-Based Diagnostic Devices, Spencer A. Schultz, Isabelle C. Noxon, Tyler A. Sisley, Andres W. Martinez

Chemistry and Biochemistry

This chapter will provide an overview of existing diagnostic devices made primarily out of paper and then focus on paper-based microfluidic devices, the next generation of paper-based diagnostic devices that promises to extend the use of paper as a material for fabricating diagnostic devices well into the future.

Chapter Contents:

  • 2.1 Introduction
  • 2.2 Current paper-based diagnostic devices
  • 2.2.1 Dipstick devices
  • 2.2.2 Lateral-flow devices
  • 2.2.2.1 Vertical-flow devices
  • 2.2.3 Paper-based arrays
  • 2.3 Paper-based microfluidic devices
  • 2.3.1 Fabrication of paper-based microfluidic devices
  • 2.3.2 Applications of paper-based microfluidic ...


Poly(N-Isopropylacrylamide) Hydrogels For Storage And Delivery Of Reagents To Paper-Based Analytical Devices, Haydn T. Mitchell, Spencer Schultz, Philip Costanzo, Andres W. Martinez Jul 2015

Poly(N-Isopropylacrylamide) Hydrogels For Storage And Delivery Of Reagents To Paper-Based Analytical Devices, Haydn T. Mitchell, Spencer Schultz, Philip Costanzo, Andres W. Martinez

Chemistry and Biochemistry

The thermally responsive hydrogel N,N'-methylenebisacrylamide-cross-linked poly(N-isopropylacrylamide) (PNIPAM) was developed and evaluated as a reagent storage and delivery system for microfluidic paper-based analytical devices (microPADs). PNIPAM was shown to successfully deliver multiple solutions to microPADs in specific sequences or simultaneously in laminar-flow configuration and was found to be suitable for delivering four classes of reagents to the devices: Small molecules, enzymes, antibodies and DNA. PNIPAM was also able to successfully deliver a series of standard glucose solutions to microPADs equipped to perform a colorimetric glucose assay. The results of these tests were used to produce an external calibration ...


Microfluidic Paper-Based Analytical Devices: From Pocket To Paper-Based Elisa, Andres W. Martinez Jan 2011

Microfluidic Paper-Based Analytical Devices: From Pocket To Paper-Based Elisa, Andres W. Martinez

Chemistry and Biochemistry

Microfluidic paper-based analytical devices (microPADs) began as a simple idea with an ambitious goal. The idea was to make microfluidic devices out of paper instead of plastic or glass. The goal was to develop low-cost and portable paper-based diagnostic devices to improve healthcare in developing countries. Over the past 6 years, many developments have been made in the emerging field of paper-based microfluidic devices. Reviewing the development of these devices in the Whitesides group at Harvard University (Cambridge, MA, USA) can provide some insight into the future of the field and encourage scientists from a variety of backgrounds to contribute ...