Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Qcm Aptasensor For Rapid And Specific Detection Of Avian Influenza Virus, Luke Brockman May 2013

Qcm Aptasensor For Rapid And Specific Detection Of Avian Influenza Virus, Luke Brockman

Theses and Dissertations

There has been a need for rapid detection of avian influenza virus (AIV) H5N1 due to it being a potential pandemic threat. Most of the current methods, including culture isolation and PCR, are very sensitive and specific but require specialized laboratories and trained personnel in order to complete the tests and are time-consuming. The goal of this study was to design a biosensor that would be able to rapidly detect AIV H5N1 using aptamers as biosensing material and a quartz crystal microbalance (QCM) for transducing method. Specific DNA aptamers against AIV H5N1 were immobilized, through biotin and streptavidin conjugation, onto ...


Interactions Between Ions And Lysenin Nanochannels And Their Potential Applications As Biosensors, Radwan Awwad Al Faouri May 2013

Interactions Between Ions And Lysenin Nanochannels And Their Potential Applications As Biosensors, Radwan Awwad Al Faouri

Theses and Dissertations

Lysenin is classified as a pore-forming toxin protein that is isolated from the earthworm Eisenia fetida and consists of 297 amino acids [1]. Lysenin inserts large conducting pores (3.0-4.7 nm in diameter) into artificial membranes (BLM) which include sphingomyelin. These pores (channels) are open and oriented upon insertion into the bilayer lipid membrane. Lysenin channels gate at positive voltages (voltage-induced gating), but not at negative voltages. Lysenin pores also exhibit activity modulation in response to changes in ionic strength and pH, indicating that electrostatic interaction is responsible for Lysenin conductance activities. In this line of inquiries, and by ...