Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Life Sciences

A Novel Autophagy Regulatory Mechanism That Functions During Programmed Cell Death: A Dissertation, Tsun-Kai Chang Sep 2013

A Novel Autophagy Regulatory Mechanism That Functions During Programmed Cell Death: A Dissertation, Tsun-Kai Chang

GSBS Dissertations and Theses

Autophagy is a cellular process that delivers cytoplasmic materials for degradation by the lysosomes. Autophagy-related (Atg) genes were identified in yeast genetic screens for vehicle formation under stress conditions, and Atg genes are conserved from yeast to human. When cells or animals are under stress, autophagy is induced and Atg8 (LC3 in mammal) is activated by E1 activating enzyme Atg7. Atg8-containing membranes form and surround cargos, close and mature to become the autophagosomes. Autophagosomes fuse with lysosomes, and cargos are degraded by lysosomal enzymes to sustain cell viability. Therefore, autophagy is most frequently considered to function in cell survival. Whether ...


Susceptibility Of Apoptotic Cells To Hydrolysis By Spla2: Molecular Basis And Mechanisms Defined, Elizabeth Gibbons Jul 2013

Susceptibility Of Apoptotic Cells To Hydrolysis By Spla2: Molecular Basis And Mechanisms Defined, Elizabeth Gibbons

Theses and Dissertations

Secretory phospholipase A2 hydrolyzes phospholipids at a lipid-water interface, resulting in pro-inflammatory products being released from cell membranes. Healthy cells are resistant to cleavage by this enzyme, but apoptotic cells become susceptible to its activity. Only bilayers with certain characteristics are able to be hydrolyzed. Most recently, studies in this lab have emphasized the idea that the biophysical state of the bilayer (in terms of lipid order, spacing, and fluidity) is relevant in determining the probability of one phospholipid escaping the membrane to be hydrolyzed. Prior to this study, it had been shown that apoptotic cells undergo biophysical alterations that ...


The Role Of Nucleolin In B-Cell Lymphomas And Fas-Mediated Apoptotic Signaling, Jillian F. Wise May 2013

The Role Of Nucleolin In B-Cell Lymphomas And Fas-Mediated Apoptotic Signaling, Jillian F. Wise

UT GSBS Dissertations and Theses (Open Access)

The death receptor Fas has a key role in mediating homeostasis, elimination of defective cells and more recently implicated in cancer promotion. Many effective anti-cancer therapies depend on Fas-mediated apoptosis to eradicate tumor cells and ineffective Fas-apoptotic signaling is a basis for primary as well as acquired resistance to chemotherapy. We hypothesized that Fas is subjected to direct regulation by inhibitory proteins attained by cancer cells. To screen for potential binding modulators of Fas, we analyzed lymphoma cells for Fas binding proteins. This purification scheme identified high scoring peptides derived from nucleolin, a nuclear protein known to be overexpressed in ...


Oxidative Stress Based Strategies For Enhancing The Efficacy Of Histone Deacetylase Inhibitors (Hdaci), Nilsa Rivera-Del Valle May 2013

Oxidative Stress Based Strategies For Enhancing The Efficacy Of Histone Deacetylase Inhibitors (Hdaci), Nilsa Rivera-Del Valle

UT GSBS Dissertations and Theses (Open Access)

Histone deacetylase inhibitors (HDACi) are anti-cancer drugs that primarily act upon acetylation of histones, however they also increase levels of intracellular reactive oxygen species (ROS). We hypothesized that agents that cause oxidative stress might enhance the efficacy of HDACi. To test this hypothesis, we treated acute lymphocytic leukemia cells (ALL) with HDACi and adaphostin (ROS generating agent). The combination of two different HDACi (vorinostat or entinostat) with adaphostin synergistically induced apoptosis in ALL. This synergistic effect was blocked when cells were pre-treated with the caspase-9 inhibitor, LEHD. In addition, we showed that loss of the mitochondrial membrane potential is the ...


Investigating The Interplay Between Protein Kinases And Caspases, Jacob P. Turowec Mar 2013

Investigating The Interplay Between Protein Kinases And Caspases, Jacob P. Turowec

Electronic Thesis and Dissertation Repository

The balance between cell survival and death is a crucial process in human development and tissue homeostasis, but is also misregulated in disease. In large part, apoptosis is controlled by caspases, a hierarchical series of cysteine aspartic acid proteases that demolish the cell by cleaving key structural and enzymatic proteins, but emerging paradigms have highlighted the ability of kinases to regulate caspase activity. One way in which kinases can control the progression of apoptosis is through phosphorylation of caspase substrates, which acts to prevent caspase cleavage of that target.

In this thesis, we develop new strategies to study this regulatory ...


Regulation Of The Tumor Suppresser P53 And Survivin By Ras And Ral Gtpases:Implications For Malignant Transformation, Awet G. Tecleab Jan 2013

Regulation Of The Tumor Suppresser P53 And Survivin By Ras And Ral Gtpases:Implications For Malignant Transformation, Awet G. Tecleab

Graduate Theses and Dissertations

Abstract

Although the critical role of the small GTPases Ras and Ral in oncogenesis has been well documented, much remains to be investigated about the molecular mechanism by which these GTPases regulate malignant transformation. The work under this thesis made two major contributions to this field. The first is the discovery that K-Ras, RalA and/or RalB are required for the maintenance of the high levels of the anti-apoptotic protein survivin in some human cancer cells, and the second is the demonstration that down regulation of K-Ras, RalA and/or RalB, but not Raf-1 or Akt1/2, stabilizes the tumor ...


The Multifunctional Protein Daxx: Studies Of Its Biology And Regulation, And Discovery Of A Novel Function, Trisha Agrawal Jan 2013

The Multifunctional Protein Daxx: Studies Of Its Biology And Regulation, And Discovery Of A Novel Function, Trisha Agrawal

Publicly Accessible Penn Dissertations

Daxx, a multifunctional protein with a diverse set of proposed functions, is ubiquitously expressed and highly conserved through evolution. A primarily nuclear protein, Daxx is able to regulate apoptosis, transcription, and cellular proliferation. Despite many studies into the function of Daxx, its precise role in the cell remains enigmatic. Herein, evidence is presented to expand upon the known anti-apoptotic function of Daxx, to establish Daxx as a novel molecular chaperone, and to further its repertoire of transcriptional targets. As an apoptotic inhibitor, Daxx is known to regulate p53 by stabilizing its main negative regulator, Mdm2, via formation of a ternary ...