Open Access. Powered by Scholars. Published by Universities.®

Life Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

Kinesiology

2019

Muscle

University of Massachusetts Amherst

Articles 1 - 2 of 2

Full-Text Articles in Life Sciences

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett Oct 2019

Mechanisms That Limit Oxidative Phosphorylation During High-Intensity Muscle Contractions In Vivo, Miles F. Bartlett

Doctoral Dissertations

Skeletal muscle oxidative capacity plays a critical role in human health and disease. Although current models of oxidative phosphorylation sufficiently describe skeletal muscle energetics during moderate-intensity contractions, much is still unknown about the mechanisms that control and limit oxidative phosphorylation during high-intensity contractions. In particular, the oxygen cost of force generation is augmented during exercise at workloads above the lactate threshold. Presently, it is unclear whether this augmentation in muscle oxygen consumption is driven by increased rates of oxidative ATP synthesis (ATPOX) or by decreases in the efficiency of ATPOX due to mitochondrial uncoupling. To address this gap ...


Tropomyosin-Based Effects Of Acidosis On Thin-Filament Regulation During Muscle Fatigue, Brent Scott Jul 2019

Tropomyosin-Based Effects Of Acidosis On Thin-Filament Regulation During Muscle Fatigue, Brent Scott

Masters Theses

Skeletal muscle fatigue is defined as a loss in the force/velocity generating capacity of a muscle. A portion of the loss in function is attributable to effects of acidosis (i.e. low pH) on the regulatory proteins, troponin and tropomyosin (Tm), which regulate the binding of myosin and actin in a calcium (Ca++) dependent manner. However, the relative role of troponin and Tm on myosin-actin function during acidosis is not clear, nor are the mechanisms underlying these effects. PURPOSE: To determine the role of Tm in the acidosis-induced depression of muscle function using isolated muscle proteins in an in ...