Open Access. Powered by Scholars. Published by Universities.®

Electro-Mechanical Systems Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 522

Full-Text Articles in Electro-Mechanical Systems

Concrete Crack Detection And Monitoring Using A Capacitive Dense Sensor Array, Jin Yan, Austin Downey, Alessandro Cancelli, Simon Laflamme, An Chen, Jian Li, Filippo Ubertini Jun 2019

Concrete Crack Detection And Monitoring Using A Capacitive Dense Sensor Array, Jin Yan, Austin Downey, Alessandro Cancelli, Simon Laflamme, An Chen, Jian Li, Filippo Ubertini

Simon Laflamme

Cracks in concrete structures can be indicators of important damage and may significantly affect durability. Their timely identification can be used to ensure structural safety and guide on-time maintenance operations. Structural health monitoring solutions, such as strain gauges and fiber optics systems, have been proposed for the automatic monitoring of such cracks. However, these solutions become economically difficult to deploy when the surface under investigation is very large. This paper proposes to leverage a novel sensing skin for monitoring cracks in concrete structures. This sensing skin is constituted of a flexible electronic termed soft elastomeric capacitor, which detects a change ...


Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li Jun 2019

Effect Of The Nonlinear Material Viscosity On The Performance Of Dielectric Elastomer Transducers, Yuanping Li

Electronic Thesis and Dissertation Repository

As a typical type of soft electroactive materials, dielectric elastomers (DEs) are capable of producing large voltage-induced deformation, which makes them desirable materials for a variety of applications in transduction technology, including tunable oscillators, resonators, biomimetics and energy harvesters. The dynamic and energy harvesting performance of such DE-based devices is strongly affected not only by multiple failure modes such as electrical breakdown, electromechanical instability, loss-of-tension and fatigue, but also by their material viscoelasticity. Moreover, as suggested by experiments and theoretical studies, DEs possess nonlinear relaxation processes, which makes modeling of the performance of DE-based devices more challenging.

In this thesis ...


A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim Jun 2019

A Low-Cost Experimental Testbed For Multi-Agent System Coordination Control, Victor Fernandez-Kim

LSU Master's Theses

A multi-agent system can be defined as a coordinated network of mobile, physical agents that execute complex tasks beyond their individual capabilities. Observations of biological multi-agent systems in nature reveal that these ``super-organisms” accomplish large scale tasks by leveraging the inherent advantages of a coordinated group. With this in mind, such systems have the potential to positively impact a wide variety of engineering applications (e.g. surveillance, self-driving cars, and mobile sensor networks). The current state of research in the area of multi-agent systems is quickly evolving from the theoretical development of coordination control algorithms and their computer simulations to ...


Commercial Vehicle Research Buggy For Active Driver Assistance Systems, Fernando Mondragon-Cardenas, Nathaniel Mccutcheon Furbeyre, Ricardo Steven Lickiss Tan Iv Jun 2019

Commercial Vehicle Research Buggy For Active Driver Assistance Systems, Fernando Mondragon-Cardenas, Nathaniel Mccutcheon Furbeyre, Ricardo Steven Lickiss Tan Iv

Mechanical Engineering

This is the Final Design Report for Daimtronics, a senior project team sponsored by Professor Charles Birdsong of Cal Poly and by Daimler Trucks North America. This team integrated mechatronic systems into a scale semi-truck chassis using existing mechanical and software systems from three separate Cal Poly senior projects over the recent years: Daimscale, MicroLaren, and ProgreSSIV. The goal was to have a user-friendly platform capable of executing autonomous driving algorithms that are programmable at a high level in Simulink and Robotic Operating System (ROS). Advanced driver assistance and autonomous vehicle algorithms were not within the scope of this project ...


Heat: Hydraulic And Electric Animation Team, Tyler J. Couvrette, Michael J. Cain, Sara T. Novell, Dexter K. Yanagisawa Jun 2019

Heat: Hydraulic And Electric Animation Team, Tyler J. Couvrette, Michael J. Cain, Sara T. Novell, Dexter K. Yanagisawa

Mechanical Engineering

Each New Years’ Day, the Cal Poly Rose Float presents a flower-covered float to the world at the Tournament of Roses parade. This floral display, paired with moving mechanical animations, shows off Cal Poly to the world. This project strove to keep Cal Poly on the cutting edge of technology both in parade floats, and in engineering, by creating a completely electric-powered animation system.

To accomplish this, a group of students set out to make the fully electric animation system that can power both the hydraulic and electric mechanisms on the Float. This was accomplished through months of planning and ...


Cal Poly Satellite Positioning Systems: "Thrust Or Bust!", Josh W. Neiman, Milena A. Milich, Gerardo Ramirez, Joshua A. Tran Jun 2019

Cal Poly Satellite Positioning Systems: "Thrust Or Bust!", Josh W. Neiman, Milena A. Milich, Gerardo Ramirez, Joshua A. Tran

Mechanical Engineering

Satellites need a way to make precise corrections to their orbit and positioning. The purpose of this project is to design a gimbal mechanism for Astranis that orients an ion thruster along a requested vector. The gimbal must produce any vector within a 2.5° cone in a thirty-minute window. Current systems are expensive and not well suited to this application. The design must be operable in a space environment and optimize mass, size, and reliability. Our design toggles between four discrete positions to achieve an average thrust vector. The gimbal accomplishes this using four solenoids that tilt a plate ...


High Resolution Validation Of Next Generation Turbulent Flow Models Using Neutron Beams, Laser Fluorescence, And Cryogenic Helium, Landen G Mcdonald May 2019

High Resolution Validation Of Next Generation Turbulent Flow Models Using Neutron Beams, Laser Fluorescence, And Cryogenic Helium, Landen G Mcdonald

EURēCA: Exhibition of Undergraduate Research and Creative Achievement

Turbulent fluid flow is an incredibly unpredictable subject that continues to confound scientists and engineers. All of the empirical data that has been the basis of conventional turbulent computational fluid dynamics (CFD) models for decades only extends to roughly the equivalent turbulence created when Michael Phelps swims in a pool. The problem is that this data is then extrapolated out many orders of magnitude in order to design cruise ships, airplanes, and rockets which operate in significantly more turbulent flow regimes. This creates an incredible degree of uncertainty in the design process that demands over-engineering and increased expenditures.

The development ...


Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust May 2019

Torch Mounted Wire Nipper, Steven D. Patrick, Matt Montgomery, Ben Rouse, Garrett D. Foust

Chancellor’s Honors Program Projects

No abstract provided.


3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews May 2019

3d Printing A Microfluidic Chip Capable Of Droplet Emulsion Using Ninjaflex Filament, Robert Andrews

Mechanical Engineering Undergraduate Honors Theses

This paper details an investigation into methods and designs of 3D printing a microfluidic system capable of droplet emulsion using NinjaFlex filament. The specific field in which this paper’s experiment is rooted is dubbed “BioMEMS,” short for bio microelectromechanical systems. One prominent research area in BioMEMS is developing a “lab on a chip.” Essentially, the goal is to miniaturize common lab processes to the micro scale, rendering it possible to include these processes in a small chip. Reducing necessary sample sizes, shortening the reaction times of lab processes, and increasing mobility of lab processes can all be realized through ...


Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee May 2019

Autonomous Vehicles Operating Collaboratively To Avoid Debris And Obstructions, Toan T. Le, Cole W. Oppenheim, James H. Gildart, Kyle M. Bybee

Mechanical Engineering

The purpose of this project is to demonstrate the safety and increased fuel efficiency of an automated collision avoidance system in collaborative vehicle platooning. This project was cosponsored by Daimler Trucks North America headquartered in Portland, Oregon, as well as Dr. Birdsong, and Dr. DeBruhl of Cal Poly. The mechanical engineering team consists of Cole Oppenheim, James Gildart, Toan Le, and Kyle Bybee who worked in coordination with a team of computer engineers. Vehicle platooning is a driving technique to increase the fuel efficiency of a group of vehicles by following a lead vehicle closely to reduce the drag experienced ...


Danny’S Recumbent Bike Accessibility Device Final Design Report, Joseph J. Lee, Huy Nguyen, Jack Mcatee, John Kulick May 2019

Danny’S Recumbent Bike Accessibility Device Final Design Report, Joseph J. Lee, Huy Nguyen, Jack Mcatee, John Kulick

Mechanical Engineering

The purpose of this document is to fully define our design solution and explain our manufacturing and testing results. Our project’s goal is to find a way to allow Danny Knutson, a retired Navy pilot and incomplete quadriplegic with limited use of his arms and an impaired sense of balance, to enter and exit his recumbent tricycle without any discomfort for him or his aide. We completed multiple interviews with Danny, patent research, existing product research, and other technical literature research in order to fully understand the problem. We synthesized this information to create a concrete list of customer ...


Duocel Metal Foam Display Cases, Kate Goldsworthy, Katherina Prodanov, Benjamin Swanson, Syed Hasan May 2019

Duocel Metal Foam Display Cases, Kate Goldsworthy, Katherina Prodanov, Benjamin Swanson, Syed Hasan

Mechanical Engineering

This Final Design Review (FDR) report outlines the senior design project that was conducted by a team of four mechanical engineering students at California Polytechnic State University-San Luis Obispo for ERG Materials and Aerospace Corporation. The goal of this project was to design displays that showcase the properties of ERG’s Duocel® foam at tradeshows and client meetings. To better understand the needs of our sponsor, the team researched Duocel®’s capabilities, related technologies, and relevant standards and regulations. With this information, we further defined the problem by creating a problem statement and a set of engineering specifications through a ...


Novel Low Temperature Cofired Ceramic Manufacturing Techniques For A Magnetron Field Emission Cathode, Daylon Michael Black May 2019

Novel Low Temperature Cofired Ceramic Manufacturing Techniques For A Magnetron Field Emission Cathode, Daylon Michael Black

Boise State University Theses and Dissertations

Low Temperature Cofired Ceramic (LTCC) is a material system that is ideal for integrated microelectronic packaging technology, because of its rapid prototyping and easy integration of passive components such as resistors, capacitors, and conductors. LTCC’s electrical properties makes it especially suitable for high frequency applications such as magnetrons. Recently, there has been an increased demand for greater power capacities which is resolved by phase locking multiple low power (inexpensive) magnetrons together to achieve the same power as one high power (expensive) magnetron. The Vacuum Electron Devices (VED) and Ceramic Micro Electrical Mechanical Systems (CMEMS) labs at Boise State University ...


The Design Of An Innovative Automotive Suspension For Formula Sae Racing Applications, Jared Darius Apr 2019

The Design Of An Innovative Automotive Suspension For Formula Sae Racing Applications, Jared Darius

Senior Honors Theses

This thesis details an analytical approach to an innovative suspension system design for implementation to the Formula SAE collegiate competition. It focuses specifically on design relating to geometry, mathematical modeling, energy element relationships, and computer analysis and simulation to visualize system behavior. The bond graph approach is utilized for a quarter car model to facilitate understanding of the analytical process, then applied to a comparative analysis between two transverse half car models. The second half car model contains an additional transverse linkage with a third damper, and is compared against the baseline of the first half car model without the ...


Defining Cell Cluster Size By Dielectrophoretic Capture At An Array Of Wireless Electrodes Of Several Distinct Lengths, Joseph T. Banovetz, Min Li, Darshna Pagariya, Sungu Kim, Baskar Ganapathysubramanian, Robbyn Anand Apr 2019

Defining Cell Cluster Size By Dielectrophoretic Capture At An Array Of Wireless Electrodes Of Several Distinct Lengths, Joseph T. Banovetz, Min Li, Darshna Pagariya, Sungu Kim, Baskar Ganapathysubramanian, Robbyn Anand

Chemistry Publications

Clusters of biological cells play an important role in normal and disease states, such as in the release of insulin from pancreatic islets and in the enhanced spread of cancer by clusters of circulating tumor cells. We report a method to pattern cells into clusters having sizes correlated to the dimensions of each electrode in an array of wireless bipolar electrodes (BPEs). The cells are captured by dielectrophoresis (DEP), which confers selectivity, and patterns cells without the need for physical barriers or adhesive interactions that can alter cell function. Our findings demonstrate that this approach readily achieves fine control of ...


Concrete Crack Detection And Monitoring Using A Capacitive Dense Sensor Array, Jin Yan, Austin Downey, Alessandro Cancelli, Simon Laflamme, An Chen, Jian Li, Filippo Ubertini Apr 2019

Concrete Crack Detection And Monitoring Using A Capacitive Dense Sensor Array, Jin Yan, Austin Downey, Alessandro Cancelli, Simon Laflamme, An Chen, Jian Li, Filippo Ubertini

Civil, Construction and Environmental Engineering Publications

Cracks in concrete structures can be indicators of important damage and may significantly affect durability. Their timely identification can be used to ensure structural safety and guide on-time maintenance operations. Structural health monitoring solutions, such as strain gauges and fiber optics systems, have been proposed for the automatic monitoring of such cracks. However, these solutions become economically difficult to deploy when the surface under investigation is very large. This paper proposes to leverage a novel sensing skin for monitoring cracks in concrete structures. This sensing skin is constituted of a flexible electronic termed soft elastomeric capacitor, which detects a change ...


Civilian Acquirer For Fire Safety (Cafs), Antara Das, Marcus Allen, Clark Shaver Apr 2019

Civilian Acquirer For Fire Safety (Cafs), Antara Das, Marcus Allen, Clark Shaver

Posters

The department of Electronics Engineering Technology (EET) of Pittsburg State University has designed a prototype of an autonomous rover to help firefighters to find lives trapped in a building during an event of fire. The rover prototype has been named CAFS, which is the abbreviated form for Civilian Acquirer for Fire Safety. This device intends to produce the first ever autonomous system to locate, record, and transmit people’s location from within a building to a user outside of the building. According to the National Fire Protection Association (NFPA), on 2017, 72% of the fire that happened in the USA ...


Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson Mar 2019

Reactive Ion Etching Selectivity Of Si/Sio2: Comparing Of Two fluorocarbon Gases Chf3 And Cf4, Meiyue Zhang, Pat Watson

Protocols and Reports

Two reactive ion etching (RIE) processes were studied to show the relative etch selectivity between SiO2 and Si using two fluorocarbon gases, CF4 and CHF3. Results show that CHF3 gives better selectivity (16:1) over CF4 (1.2 :1). On the other hand, the etch rate of SiO2 of CF4 is approximately 52.8 nm/min, faster than CHF3 (32.4 nm/min).


Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash Jan 2019

Bouncing Dynamics Of A Class Of Mem/Nem Switching Systems, Mohamed Bognash

Electronic Thesis and Dissertation Repository

The aim of the present research is to understand the bouncing dynamic behavior of NEM/MEM switches in order to improve the switch performance and reliability. It is well known that the bouncing can dramatically degrade the switch performance and life; hence, in the present study, bouncing dynamics of a cantilever-based NME/MEM switch has been studied in detail. To this end, a model of a MEM switch that incorporates electrostatic force, squeeze film air damping force as well as asperity-based contact force has been proposed for an electrostatically actuated switch. An actuation force due to piezoelectric effects is further ...


Remotely Controlled Industrial Robotic Arm And Simulation Of Automated Thermal Furnace, Prince Mehandi Ratta Jan 2019

Remotely Controlled Industrial Robotic Arm And Simulation Of Automated Thermal Furnace, Prince Mehandi Ratta

Dissertations, Master's Theses and Master's Reports

The right execution of controllers ensures the correct analysis of information, generating efficient results and better optimizing the system. In this report, two controllers were designed. Firstly, a remotely controlled robotic arm, since there are no such type commercially available controllers. Moreover, robotic platforms are costly, so students and researchers are often unable to learn the concepts of programming industrial robots. This project makes a non-destructive, remotely-controlled robotic arm to better teach students and researchers about programming and control of robotic arms. Secondly, simulation of an automated thermal furnace for ArcelorMittal on SIMULINK, which is used for the annealing process ...


Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein Jan 2019

Optimal Power Flow Control Of Networked Dc Microgrids, Eddy H. Trinklein

Dissertations, Master's Theses and Master's Reports

The US military is moving toward the electrification of many weapon systems and platforms. Advanced weapon systems such as high energy radar, electro-magnetic kinetic weapons and directed energy pose significant integration challenges due to their pulsed power electrical load profile. Additionally, the weapons platforms, including ships, aircraft, and vehicles can be studied as a mobile microgrids with multiple generation sources, loads, and energy storage. There is also a desire to extend the mission profile and capabilities of these systems. Common goals are to increase fuel efficiency, maintaining system stability, and reduce energy storage size as typically required to enable pulsed ...


Exoskeleton Leg Brace, Aaron Indermuhle, Magomed Kasumov, Cevat Bagcioglu, Lucas Battaglia Jan 2019

Exoskeleton Leg Brace, Aaron Indermuhle, Magomed Kasumov, Cevat Bagcioglu, Lucas Battaglia

Williams Honors College, Honors Research Projects

This report details the design process of a lower limb exoskeleton leg brace for elderly people with walking disabilities or others with disabilities that limit mobility. While there are other similar products on the market, the general design can be improved and these improvements have been implemented into the design presented within. Among these improvements are progress in efficiency, weight, user comfort, and cost. The results of the study are the design of a novel leg brace that improves on existing designs in each of these areas.

Our design solution incorporates the use of a single leg brace with no ...


Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell Jan 2019

Reactive Archey Target Design Team "Mimic", Brandon Croyle, Jacob Boss, David Rodgers, Austin Wivell

Williams Honors College, Honors Research Projects

This design project will aim to provide archery hunters with a platform to simulate shooting at string jumping deer. String jumping refers to a spooked deer hearing the snap of a bow string and instintivly ducking up to ten inches. This often results in wounded or missed deer. We will design and build a control system that uses the sound of a bow string as a trigger to operate a mechanical target system. A sound sensor will mimic a deer’s hearing in close range hunting and then send a signal to the mechanical system to replicate the dropping motion ...


Thin-Film Sensor For Fatigue Crack Sensing And Monitoring In Steel Bridges Under Varying Crack Propagation Rates And Random Traffic Loads, Xiangxiong Kong, Jian Li, Caroline Bennett, William Collins, Simon Laflamme, Hongki Jo Jan 2019

Thin-Film Sensor For Fatigue Crack Sensing And Monitoring In Steel Bridges Under Varying Crack Propagation Rates And Random Traffic Loads, Xiangxiong Kong, Jian Li, Caroline Bennett, William Collins, Simon Laflamme, Hongki Jo

Civil, Construction and Environmental Engineering Publications

Fatigue cracks are critical structural concerns for steel highway bridges, and fatigue initiation and propagation activity continues undetected between physical bridge inspections. Monitoring fatigue crack activity between physical inspections can provide far greater reliability in structural performance and can be used to prevent excessive damage and repair costs. In this paper, a thin-film strain sensor, called a soft elastomeric capacitor (SEC) sensor, is evaluated for sensing and monitoring fatigue cracks in steel bridges. The SEC is a flexible and mechanically robust strain sensor, capable of monitoring strain over large structural surfaces. By deploying multiple SECs in the form of dense ...


Stair Climbing Hand Truck, James Mcpherson Jan 2019

Stair Climbing Hand Truck, James Mcpherson

All Undergraduate Projects

Abstract

Getting a heavy object up a flight of stairs usually requires a team of two or more people. Even with a team of people, the task is often still difficult, dangerous, and possibly insurmountable by one person. This problem is especially prevalent in for those who are moving into apartment complexes. Most apartment complexes have many buildings with two or more floors of living quarters, and elevators are often missing. This project sought to offer a solution to this problem. The solution in question; a motorized hand-truck with 2, trigonal planar pinwheels in place of the stock wheels. The ...


Autojack - Hydraulic Powertrain System, Tyce Vu Jan 2019

Autojack - Hydraulic Powertrain System, Tyce Vu

All Undergraduate Projects

A primary problem for mechanics and automotive enthusiasts is the risk associated with lifting and securing a vehicle with conventional jack stands. Often times, improper jack-stand installation results in the vehicle collapsing unexpectedly, causing injury and/or death. This problem can be minimized through the application of a newly re-designed vehicle lifting system. The conventional method for lifting cars is time consuming and can be unsafe in many circumstances. A better, safer, and more efficient lift design was needed; the AutoJack. The approach of the AutoJack design was entirely focused on the safety of lifting a vehicle. Safety was improved ...


Power Wheelchair Canopy, Mohamed F. Battah, Joshua D. Brown, Dujuan J. Mcclendon, Gavin M. Francisco Jan 2019

Power Wheelchair Canopy, Mohamed F. Battah, Joshua D. Brown, Dujuan J. Mcclendon, Gavin M. Francisco

Williams Honors College, Honors Research Projects

Some power wheelchair users can not drive and independently hold an umbrella at the time because they do not have much upper body strength. Therefore, users are unprotected from the rain and are getting soaking wet. One of the members of this group is in a wheelchair and faces this problem. He has previously searched for something to protect him from rain, but could not found something he could independently use. What users need is a powered umbrella that attaches to their power wheelchair. There is no such umbrella available in the market. In this project, the solution to this ...


Expendable 3d Printed Rescue Drone, Matthew Chapman, Nathan Knutty, Matthew Chapman Jan 2019

Expendable 3d Printed Rescue Drone, Matthew Chapman, Nathan Knutty, Matthew Chapman

Williams Honors College, Honors Research Projects

This project team designed a 3D printed, expendable drone capable of flying for 80 minutes with a 5 lb payload in order to deliver rescue supplies to individuals in distress.


Development Of An Electromechanical Valvetrain, Ryan Clarke, Emett Santucci, Isaac Yako, Joseph Mckeirnan Jan 2019

Development Of An Electromechanical Valvetrain, Ryan Clarke, Emett Santucci, Isaac Yako, Joseph Mckeirnan

Engineering E-Portfolios and Projects

The Electromechanical Valvetrain Conversion Team designed and implemented a new system to improve internal combustion engine performance and efficiency. This system replaces the traditional camshaft-based valvetrain with a computer-controlled pneumatic actuation system. This new system has the potential to reduce emissions without sacrificing the benefits which have made combustion engines a popular power source.


Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler Jan 2019

Hydrogen Fuel Cell Gasket Handling And Sorting With Machine Vision Integrated Dual Arm Robot, Devin C. Fowler

Electronic Theses and Dissertations

Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters), all oriented in the same position. Identifying the original orientation of fuel cell components and loading them in stacks for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by automated fabrication technologies of fuel cell components and by robotic assembly processes. We present an innovative robotic technology which enables the integration of automated fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a fully automated fuel ...