Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of New Mexico

Discipline
Keyword
Publication Year
Publication

Articles 1 - 9 of 9

Full-Text Articles in Computational Engineering

Recipe For Disaster, Zac Travis Mar 2019

Recipe For Disaster, Zac Travis

MFA Thesis Exhibit Catalogs

Today’s rapid advances in algorithmic processes are creating and generating predictions through common applications, including speech recognition, natural language (text) generation, search engine prediction, social media personalization, and product recommendations. These algorithmic processes rapidly sort through streams of computational calculations and personal digital footprints to predict, make decisions, translate, and attempt to mimic human cognitive function as closely as possible. This is known as machine learning.

The project Recipe for Disaster was developed by exploring automation in technology, specifically through the use of machine learning and recurrent neural networks. These algorithmic models feed on large amounts of data as ...


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was ...


Data-Driven Uncertainty Quantification Interpretation With High Density Regions, Matthew Gregor Peterson Jul 2018

Data-Driven Uncertainty Quantification Interpretation With High Density Regions, Matthew Gregor Peterson

Computer Science ETDs

In a time when data is being constantly generated by phones, vehicles, sensor net- works, social media, etc. detecting anomalies with in the data can be very crucial. In cases where we know little prior knowledge about the data, it becomes difficult to extract uncertainty about our results. In this thesis, we will propose a framework in which we can extract uncertainty distributions from data-driven modeling prob- lems. We will show some concrete examples of how to apply framework and provide some insight into what the uncertainty distributions are telling us using High Density Regions (HDRs).


Early Alert Of At-Risk Students: An Ontology-Driven Framework, Elias S. Lopez Apr 2018

Early Alert Of At-Risk Students: An Ontology-Driven Framework, Elias S. Lopez

Electrical and Computer Engineering ETDs

As higher education continues to adapt to the constantly shifting conditions that society places on institutions, the enigma of student attrition continues to trouble universities. Early alerts for students who are at-risk academically have been introduced as a method for solving student attrition at these institutions. Early alert systems are designed to provide students who are academically at-risk a prompt indication so that they may correct their performance and make progress towards successful semester completion. Many early alert systems have been introduced and implemented at various institutions with varying levels of success. Currently, early alert systems employ different techniques for ...


State-Based Peridynamic Particle Method, Siavash Nikravesh Kazeroni Nov 2017

State-Based Peridynamic Particle Method, Siavash Nikravesh Kazeroni

Civil Engineering ETDs

In this study, a novel discrete Peridynamics framework called the “State-Based Peridynamic Particle Model (SPPM)” is introduced. In this approach, a solid body is simulated by neither solving differential equations nor integral equations; instead, the simulation is accomplished by directly solving discrete systems of equations using finite summations. SPPM is formulated for a random distribution of particles, hence, it can be considered as a meshfree method. The assumptions of continuity and homogeneity are not necessary for this approach. The SPPM is a generalization of the “State-Based Peridynamic Lattice Model (SPLM)”. In the SPLM formulation, for sake of simplicity and computational ...


Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi Jul 2017

Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi

Mechanical Engineering ETDs

Clean (and specifically renewable) energy is steadily improving its global share. However, finite availability of fossil fuels and the growing effects of climate change make it an urgent priority to convince the industry and governments to incentivize investment in the renewable energy field and to make it more attractive by decreasing the capital cost. Until recently, uncertainties in funding limited renewable energy development, especially in the US. That limitation has been one of the barriers to progress. Another limitation of many renewable energy systems is the variability in their output, which makes them unsuitable for baseline power production. Therefore, fossil ...


Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash Jul 2017

Ion Size Effects On The Properties Of Charge Regulating Electric Double Layers, Divya Jyoti Prakash

Nanoscience and Microsystems ETDs

The behavior of charged interfaces formed in various systems like colloidal solution, fuel cells, battery, electro-deposition, catalysis is governed by the properties of electrical double layer(EDL). Civilized model with charge regulation boundary condition determined by thermodynamic equilibrium at the interface has been used to model electrical double layer and shows that size of the solvent plays a critical role in characterizing the properties of EDL using classical density functional theory.This thesis investigates the impact of ion size in electrolyte solutions on the electrical double layer formed at the interface using a similar model. It is found that ion ...


Detection Of Pheromone Laying Event In Foraging Data Of Harvester Ants Using Change Point Analysis Method, Safeeul Bashir Safee Apr 2017

Detection Of Pheromone Laying Event In Foraging Data Of Harvester Ants Using Change Point Analysis Method, Safeeul Bashir Safee

Computer Science ETDs

Communication is an important factor in the foraging performance of social insects, such as ants. During foraging, ants keep track of food sources by using memory (site fidelity) or by communicating through pheromones. Previous field experiments showed that the rate of seed collection depends on the distribution of food in the environment. If food is spatially clustered, then it is beneficial for ants recruit nest mates to collect seeds from large clusters. However, we do not know when the recruitment occurs in natural ant population. To explore this question, we used a power law distribution to arrange seeds in piles ...


Automatic Segmentation Of Coronal Holes In Solar Images And Solar Prediction Map Classification, Venkatesh Jatla Nov 2016

Automatic Segmentation Of Coronal Holes In Solar Images And Solar Prediction Map Classification, Venkatesh Jatla

Electrical and Computer Engineering ETDs

Solar image analysis relies on the detection of coronal holes for predicting disruptions to earth’s magnetic field. The coronal holes act as sources of solar wind that can reach the earth. Thus, coronal holes are used in physical models for predicting the evolution of solar wind and its potential for interfering with the earth’s magnetic field. Due to inherent uncertainties in the physical models, there is a need for a classification system that can be used to select the physical models that best match the observed coronal holes. The physical model classification problem is decomposed into three subproblems ...