Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computational Engineering

Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde May 2019

Receptive Fields Optimization In Deep Learning For Enhanced Interpretability, Diversity, And Resource Efficiency., Babajide Odunitan Ayinde

Electronic Theses and Dissertations

In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and ...


Clustering Heterogeneous Autism Spectrum Disorder Data., Mariem Boujelbene May 2019

Clustering Heterogeneous Autism Spectrum Disorder Data., Mariem Boujelbene

Electronic Theses and Dissertations

Autism spectrum disorder (ASD) is a developmental disorder that affects communication and behavior. Several studies have been conducted in the past years to develop a better understanding of the disease and therefore a better diagnosis and a better treatment by analyzing diverse data sets consisting of behavioral surveys and tests, phenotype description, and brain imagery. However, data analysis is challenged by the diversity, complexity and heterogeneity of patient cases and by the need for integrating diverse data sets to reach a better understanding of ASD. The aim of our study is to mine homogeneous groups of patients from a heterogeneous ...


Modeling And Counteracting Exposure Bias In Recommender Systems., Sami Khenissi May 2019

Modeling And Counteracting Exposure Bias In Recommender Systems., Sami Khenissi

Electronic Theses and Dissertations

Recommender systems are becoming widely used in everyday life. They use machine learning algorithms which learn to predict our preferences and thus influence our choices among a staggering array of options online, such as movies, books, products, and even news articles. Thus what we discover and see online, and consequently our opinions and decisions, are becoming increasingly affected by automated predictions made by learning machines. Similarly, the predictive accuracy of these learning machines heavily depends on the feedback data, such as ratings and clicks, that we provide them. This mutual influence can lead to closed-loop interactions that may cause unknown ...


Landmine Detection Using Semi-Supervised Learning., Graham Reid Dec 2018

Landmine Detection Using Semi-Supervised Learning., Graham Reid

Electronic Theses and Dissertations

Landmine detection is imperative for the preservation of both military and civilian lives. While landmines are easy to place, they are relatively difficult to remove. The classic method of detecting landmines was by using metal-detectors. However, many present-day landmines are composed of little to no metal, necessitating the use of additional technologies. One of the most successful and widely employed technologies is Ground Penetrating Radar (GPR). In order to maximize efficiency of GPR-based landmine detection and minimize wasted effort caused by false alarms, intelligent detection methods such as machine learning are used. Many sophisticated algorithms are developed and employed to ...


Multi Self-Adapting Particle Swarm Optimization Algorithm (Msapso)., Gerhard Koch May 2018

Multi Self-Adapting Particle Swarm Optimization Algorithm (Msapso)., Gerhard Koch

Electronic Theses and Dissertations

The performance and stability of the Particle Swarm Optimization algorithm depends on parameters that are typically tuned manually or adapted based on knowledge from empirical parameter studies. Such parameter selection is ineffectual when faced with a broad range of problem types, which often hinders the adoption of PSO to real world problems. This dissertation develops a dynamic self-optimization approach for the respective parameters (inertia weight, social and cognition). The effects of self-adaption for the optimal balance between superior performance (convergence) and the robustness (divergence) of the algorithm with regard to both simple and complex benchmark functions is investigated. This work ...