Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 159

Full-Text Articles in Computational Engineering

A Multiline Anchor Concept For Floating Offshore Wind Turbines, Casey Fontana Jan 2019

A Multiline Anchor Concept For Floating Offshore Wind Turbines, Casey Fontana

Doctoral Dissertations

Floating offshore wind turbines (FOWTs) hold great potential for the renewable energy industry, but capital costs remain high. In efforts to increase FOWT substructure efficiency and reduce costs, this thesis investigates a novel multiline anchor concept in which FOWTs share anchors instead of being moored separately. The goal of this thesis is to evaluate the force dynamics, design, and potential cost reduction of the system. Anchor forces are simulated using the NREL 5 MW reference turbine and OC4-DeepCwind semisubmersible platform, and multiline anchor force is computed as the vector sum of the contributing mooring line tensions.

The use of a ...


Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria Jan 2019

Experimental And Numerical Simulation Of Split Hopkinson Pressure Bar Test On Borosilicate Glass, Mayank K. Bagaria

Dissertations, Master's Theses and Master's Reports

This study is an extension to the design of ceramic materials component exposed to bullet impact. Owing to the brittle nature of ceramics upon bullet impact, shattered pieces behave as pellets flying with different velocities and directions, damaging surrounding components. Testing to study the behavior of ceramics under ballistic impact can be cumbersome and expensive. Modeling the set-up through Finite Element Analysis (FEA) makes it economical and easy to optimize. However, appropriately incorporating the material in modeling makes laboratory testing essential. Previous efforts have concentrated on simulating crack pattern developed during 0.22 caliber pellet impact on Borosilicate glass. A ...


Immunity-Based Framework For Autonomous Flight In Gps-Challenged Environment, Mohanad Al Nuaimi Jan 2019

Immunity-Based Framework For Autonomous Flight In Gps-Challenged Environment, Mohanad Al Nuaimi

Graduate Theses, Dissertations, and Problem Reports

In this research, the artificial immune system (AIS) paradigm is used for the development of a conceptual framework for autonomous flight when vehicle position and velocity are not available from direct sources such as the global navigation satellite systems or external landmarks and systems. The AIS is expected to provide corrections of velocity and position estimations that are only based on the outputs of onboard inertial measurement units (IMU). The AIS comprises sets of artificial memory cells that simulate the function of memory T- and B-cells in the biological immune system of vertebrates. The innate immune system uses information about ...


Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski Dec 2018

Call For Abstracts - Resrb 2019, July 8-9, Wrocław, Poland, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke Dec 2018

Elevated Temperature Progressive Damage And Failure Of Duplex Stainless Steel, Darren P. Luke

Civil Engineering ETDs

Ductile failure of metals has been the focus of research efforts within academia and industry for many years since it is tremendously important for understanding the failure of structures under extreme loading conditions. However, limited research has been dedicated to elevated temperature ductile failure, which is critical for evaluating catastrophic events such as industrial, structural or shipping vessel fires. A detailed investigation was conducted on the structural response of Duplex Stainless Steel at elevated temperatures. The temperature dependence of elastic modulus, yield strength, ultimate strength, and ductility was measured up to 1000°C and a continuum damage plasticity model was ...


Variable Input Observer For Nonstationary High-Rate Dynamic Systems, Jonathan Hong, Simon Laflamme, Liang Cao, Jacob Dodson, Bryan Joyce Dec 2018

Variable Input Observer For Nonstationary High-Rate Dynamic Systems, Jonathan Hong, Simon Laflamme, Liang Cao, Jacob Dodson, Bryan Joyce

Civil, Construction and Environmental Engineering Publications

Engineering systems experiencing events of amplitudes higher than 100 gn for a duration under 100 ms, here termed high-rate dynamics, can undergo rapid damaging effects. If the structural health of such systems could be accurately estimated in a timely manner, preventative measures could be employed to minimize adverse effects. For complex high-rate problems, adaptive observers have shown promise due to their capability to deal with nonstationary, noisy, and uncertain systems. However, adaptive observers have slow convergence rates, which impede their applicability to the high-rate problems. To improve on the convergence rate, we propose a variable input space concept for ...


A Scalable, Chunk-Based Slicer For Cooperative 3d Printing, Jace J. Mcpherson Dec 2018

A Scalable, Chunk-Based Slicer For Cooperative 3d Printing, Jace J. Mcpherson

Computer Science and Computer Engineering Undergraduate Honors Theses

Cooperative 3D printing is an emerging technology that aims to increase the 3D printing speed and to overcome the size limit of the printable object by having multiple mobile 3D printers (printhead-carrying mobile robots) work together on a single print job on a factory floor. It differs from traditional layer-by-layer 3D printing due to requiring multiple mobile printers to work simultaneously without interfering with each other. Therefore, a new approach for slicing a digital model and generating commands for the mobile printers is needed, which has not been discussed in literature before. We propose a chunk-by-chunk based slicer that divides ...


Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly Nov 2018

Toward Building Resilient, Sustainable, And Smart Infrastructure In The 21st Century, Aly Mousaad Aly

Faculty Publications

In recent years, as a result of significant climate change, stringent windstorms are becoming more frequent than before. Given the threat that windstorms bring to people and property, wind/structural engineering research is imperative to improve the resilience of existing and new infrastructure, for community safety and assets protection. The Windstorm Impact, Science and Engineering (WISE) research program at Louisiana State University (LSU) focuses on creating new knowledge applicable to the mitigation of existing and new infrastructure, to survive and perform optimally under natural hazards. To achieve our research goals, we address two imperious challenges: (i) characterization of realistic wind ...


Dynamic Fracture Of Pmma, Intefacial Failure, And Local Heating, Javad Mehrmashhadi, Longzhen Wang, Florin Bobaru Ph.D. Nov 2018

Dynamic Fracture Of Pmma, Intefacial Failure, And Local Heating, Javad Mehrmashhadi, Longzhen Wang, Florin Bobaru Ph.D.

Javad Mehrmashhadi

Recent impact experiments showed the influence of a strong or weak interface in a bi-layered PMMA material has on dynamic fracture mechanisms. We show that a linear elastic with brittle damage peridynamic model, which works very well for glass, leads to crack propagation speeds significantly faster than those measured experimentally in the PMMA system. We propose an explanation for this behavior: localized heating in the region near the crack tip (due to high strain rates) softens the material sufficiently to make a difference. We introduce this effect in our peridynamic model, via a bi-linear bond force-strain relationship, and the computed ...


Esense 2.0: Modeling Biomimetic Predation With Multi-Agent Multi-Team Distributed Artificial Intelligence, D. Michael Franklin, Derek Martin Nov 2018

Esense 2.0: Modeling Biomimetic Predation With Multi-Agent Multi-Team Distributed Artificial Intelligence, D. Michael Franklin, Derek Martin

Georgia Undergraduate Research Conference (GURC)

Biologic predation is a complex interaction amongst sets of predators and prey operating within the same environment. There are many disparate factors for each member of each set to consider as they interact. Additionally, they each must seek food while avoiding other predators, meaning that they must prioritize their actions based on policies. eSense provides a powerful yet simplistic reinforcement learning algorithm that employs model-based behavior across multiple learning layers. These independent layers split the learning objectives across multiple layers, avoiding the learning-confusion common in many multi-agent systems. The new eSense 2.0 increases the number of layers and the ...


Numerical Study Of Liquid Atomization And Breakup Using The Volume Of Fluid Method In Ansys Fluent, Sai Saran Kandati Oct 2018

Numerical Study Of Liquid Atomization And Breakup Using The Volume Of Fluid Method In Ansys Fluent, Sai Saran Kandati

LSU Master's Theses

The spherical metal particles produced from the centrifugal atomization process have been the topic of numerous theoretical, experimental and numerical studies from the past few years. This atomization process uses centrifugal force to break-up molten material into spherical droplets, which are quenched into solidified granules by the flow of cold air on the spherical droplets. In the present work, a transient three-dimensional multiphase CFD model is applied to three different materials: Molten slag, aqueous glycerol solution, and molten Ni-Nb to study the influence of the dimensionless parameters on the centrifugal atomization outcome.

Results from numerical experiments indicated that the droplet ...


Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira Sep 2018

Experimental Tests And Numerical Simulations For Failure Investigation On Corrugated Boxes Used On Household Appliance Packaging, Diego Fernandes Rodrigues, José Carlos Pereira

Journal of Applied Packaging Research

Packages made of corrugated paper are fundamental to the protection, transportation and handling of the appliance product market. During the storage and sales stages of a product, the package must resist compressive loads in different directions beyond moderate impacts. In this context, the objective of this work is to develop and implement a post-processor that allows the simultaneous analysis of two of the most common failure modes of packages made of corrugated paper: failure due to tensile or compressive stress limit, and failure due to local buckling, when the buckling of the faces of the corrugated paper between two peaks ...


Multi-Objective Bayesian Optimization Of Super Hydrophobic Coatings On Asphalt Concrete Surfaces, Ali Nahvi, Ali Arabzadeh, Alireza Sassani, Mohammadkazem Sadoughi, Halil Ceylan Aug 2018

Multi-Objective Bayesian Optimization Of Super Hydrophobic Coatings On Asphalt Concrete Surfaces, Ali Nahvi, Ali Arabzadeh, Alireza Sassani, Mohammadkazem Sadoughi, Halil Ceylan

Ali Nahvi

Conventional snow removal strategies add direct and indirect expenses to the economy through profit lost due to passenger delays costs, pavement durability issues, contaminating the water runoff, and so on. The use of superhydrophobic (super-water-repellent) coating methods is an alternative to conventional snow and ice removal practices for alleviating snow removal operations issues. As an integrated experimental and analytical study, this work focused on optimizing superhydrophobicity and skid resistance of hydrophobic coatings on asphalt concrete surfaces. A layer-by-layer (LBL) method was utilized for spray depositing polytetrafluoroethylene (PTFE) on an asphalt concrete at different spray times and variable dosages of PTFE ...


Fedsm 2018 Presentation, Nima Fathi, Peter Vorobieff, Seyed Sobhan Aleyasin, Goodarz Ahmadi Jul 2018

Fedsm 2018 Presentation, Nima Fathi, Peter Vorobieff, Seyed Sobhan Aleyasin, Goodarz Ahmadi

Nima Fathi

Horizontal linear shear stress apparatus offers a convenient way to study the rheology of rigid particles suspended in viscous shear flows in the laboratory. The single particle trajectories of a buoyant spherical solid particle in a linear shear flow are investigated. Reynolds numbers less than 0.1 are considered to provide the creeping flow in this investigating. The experimental apparatus provides a linear stress, Stokes, Couette flow where the wall boundary conditions of the set up can change. The two-dimensional CFD analysis is performed to simulate the primary and secondary phases of the domain. Our numerical assessment, discrete phase element ...


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is ...


Modeling Of Swimming Cells From Nano-Scale To Micro-Scale, Yicheng Zhao May 2018

Modeling Of Swimming Cells From Nano-Scale To Micro-Scale, Yicheng Zhao

Engineering and Applied Science Theses & Dissertations

Certain human genetic diseases -- primary ciliary dyskinesia, infertility, and hydrocephalus -- are characterized by changes in beat frequency and waveform of cilia and flagella. Chlamydomonas reinhardtii, which is a single-cell green alga about ten micrometers in diameter that swims with two flagella, serves as an excellent biological model because its flagella share the same structure and genetic background as mammalian cilia and flagella. This study uses the finite element method to investigate the behavior of C. reinhardtii swimming from nano-scale to micro-scale. At the device-level, micro-scale modeling indicates that well-designed acoustic microfluidic devices can be used to trap groups of C ...


Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green May 2018

Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green

Mechanical Engineering Undergraduate Honors Theses

Most membrane research and development has been done through experimental work, which can be costly and time consuming. An accurate computational model would greatly reduce the need for these experiments. The focus of the research presented in this paper is to create an accurate computational model for membrane formation using thermally induced phase separation (TIPS). A phase field model is employed to create this model including the Cahn Hilliard Equation and Flory Huggins Theory. This model produced computational results that correspond well with theoretical and experimental results. The model was then adapted to correspond to the PVDF/DPC polymer-solvent system ...


Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle Apr 2018

Rotordynamic Analysis Of Theoretical Models And Experimental Systems, Cameron R. Naugle

Master's Theses and Project Reports

This thesis is intended to provide fundamental information for the construction and

analysis of rotordynamic theoretical models, and their comparison the experimental

systems. Finite Element Method (FEM) is used to construct models using Timoshenko

beam elements with viscous and hysteretic internal damping. Eigenvalues

and eigenvectors of state space equations are used to perform stability analysis, produce

critical speed maps, and visualize mode shapes. Frequency domain analysis

of theoretical models is used to provide Bode diagrams and in experimental data

full spectrum cascade plots. Experimental and theoretical model analyses are used

to optimize the control algorithm for an Active Magnetic Bearing ...


Pressure Measurements Inside Multiple Cavities Of A Torque Converter And Cfd Correlation, Edward De Jesus Rivera Jan 2018

Pressure Measurements Inside Multiple Cavities Of A Torque Converter And Cfd Correlation, Edward De Jesus Rivera

Dissertations, Master's Theses and Master's Reports

A torque converter was instrumented with 29 pressure transducers. The pressure transducers were located in multiple cavities. The instrumented cavities included, four transducers mounted on the impeller shell, on the channel between blades. Six transducers mounted on the pressure and suction sides on the middle streamline of a turbine blade. Another seven transducers mounted on the pressure and suction sides of the core, middle and shell streamlines of a stator blade. Seven transducers mounted on the torque converter clutch cavity. Finally, five on the cavity between the pressure plate and the turbine shell. The torque converter was part of a ...


Supporting Engineering Design Of Additively Manufactured Medical Devices With Knowledge Management Through Ontologies, Thomas Hagedorn Jan 2018

Supporting Engineering Design Of Additively Manufactured Medical Devices With Knowledge Management Through Ontologies, Thomas Hagedorn

Doctoral Dissertations

Medical environments pose a substantial challenge for engineering designers. They combine significant knowledge demands with large investment for new product development and severe consequences in the case of design failure. Engineering designers must contend with an often-chaotic environment to which they have limited access and familiarity, a user base that is difficult to engage and highly diverse in many attributes, and a market structure that often pits stakeholders against one another. As medical care in general moves towards personalized models and surgical tools towards less invasive options emerging manufacturing technologies in additive manufacturing offer significant potential for the design of ...


Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam Dec 2017

Multiphase Flow Modeling For Design And Optimization Of A Novel Down-Flow Bubble Column, Mutharasu Lalitha Chockalingam

LSU Doctoral Dissertations

The application of the Euler-Euler framework based Computational Fluid Dynamics (CFD) models for simulating the two-phase gas-liquid bubbly flow in down-flow bubble columns is discussed in detail. Emphasis is given towards the modelling and design optimization of a novel down-flow bubble column. The design features of this novel down-flow bubble column and its advantages over a conventional Plunging Jet down-flow bubble column are discussed briefly. Then, some of the present challenges in simulating a conventional Plunging Jet down-flow bubble column in the Euler-Euler framework is highlighted, and a sigmoid function based drag modification function is implemented to overcome those challenges ...


Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall Dec 2017

Real Time And High Fidelity Quadcopter Tracking System, Tyler Mckay Hall

Computer Engineering

This project was conceived as a desired to have an affordable, flexible and physically compact tracking system for high accuracy spatial and orientation tracking. Specifically, this implementation is focused on providing a low cost motion capture system for future research. It is a tool to enable the further creation of systems that would require the use of accurate placement of landing pads, payload acquires and delivery. This system will provide the quadcopter platform a coordinate system that can be used in addition to GPS.

Field research with quadcopter manufacturers, photographers, agriculture and research organizations were contact and interviewed for information ...


Cfd Simulation Of Passenger Hazard Risk At Railway Station Platforms Due To Explosive Air Blasts, Vivian Lawrence, Sakdirat Kaewunruen, Gianni Bartoli, Charalampos Baniotopoulos Aug 2017

Cfd Simulation Of Passenger Hazard Risk At Railway Station Platforms Due To Explosive Air Blasts, Vivian Lawrence, Sakdirat Kaewunruen, Gianni Bartoli, Charalampos Baniotopoulos

Sakdirat Kaewunruen

Safety is the first priority in operating transportation and transit systems. The public and customers rely on operators to assure them the reliable and safe day-to-day uses of public transports. However, based on recent factual evidences, extreme physical and cyber threats are no longer uncommon and these unpreventable measures are even more dangerous to the public’s daily lives. Such clear examples are the terrorist attacks in Saint Petersburg in 2017, in London in 2017, in Stockholm in 2017, in Brussels in 2016, in Nice in 2016, and so many more. These examples have one thing in common. The transportation ...


On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr Aug 2017

On The Ramberg-Osgood Stress-Strain Model And Large Deformations Of Cantilever Beams, Ronald J. Giardina Jr

University of New Orleans Theses and Dissertations

In this thesis the Ramberg-Osgood nonlinear model for describing the behavior of many different materials is investigated. A brief overview of the model as it is currently used in the literature is undertaken and several misunderstandings and possible pitfalls in its application is pointed out, especially as it pertains to more recent approaches to finding solutions involving the model. There is an investigation of the displacement of a cantilever beam under a combined loading consisting of a distributed load across the entire length of the beam and a point load at its end and new solutions to this problem are ...


Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi Jul 2017

Evaluation And Enhancement Of Clean Energy Systems: Analytical, Computational And Experimental Study Of Solar And Nuclear Cycles, Nima Fathi

Mechanical Engineering ETDs

Clean (and specifically renewable) energy is steadily improving its global share. However, finite availability of fossil fuels and the growing effects of climate change make it an urgent priority to convince the industry and governments to incentivize investment in the renewable energy field and to make it more attractive by decreasing the capital cost. Until recently, uncertainties in funding limited renewable energy development, especially in the US. That limitation has been one of the barriers to progress. Another limitation of many renewable energy systems is the variability in their output, which makes them unsuitable for baseline power production. Therefore, fossil ...


The Effect Of Bone And Ligament Morphology Of Ankle Joint Loading In The Neutral Position, Jinhyuk Kim Jul 2017

The Effect Of Bone And Ligament Morphology Of Ankle Joint Loading In The Neutral Position, Jinhyuk Kim

Mechanical & Aerospace Engineering Theses & Dissertations

Computational modeling of joints is used to investigate the effect of injuries, to plan surgeries, and to answer questions about joints that cannot be answered experimentally. Existing models of the ankle joint are moving toward being able to model specific patients, however, they do not include all of the anatomy (e.g., bones and/or ligaments) and have restrictive boundary conditions. These simplification in anatomy are made to minimize pre-processing and computation time. Because biomechanical modeling is increasingly focused on the implementation of patient specific cases, the effects of including more anatomical structures and determining how they affect the model ...


Ultrasound Scatter In Heterogeneous 3d Microstructures, Brady Engle, Ronald A. Roberts, Robert Grandin Jun 2017

Ultrasound Scatter In Heterogeneous 3d Microstructures, Brady Engle, Ronald A. Roberts, Robert Grandin

Robert Grandin

This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful ...


Surrogate Modeling Of Ultrasonic Testing Simulations Using Variable-Fidelity Models And Data-Driven Methods, Robert Grandin, Leifur Leifsson Jun 2017

Surrogate Modeling Of Ultrasonic Testing Simulations Using Variable-Fidelity Models And Data-Driven Methods, Robert Grandin, Leifur Leifsson

Robert Grandin

Ultrasonic testing (UT) is used to detect internal flaws in materials or to characterize material properties [1]. Computational simulations are an important part of the UT process. Having fast surrogate models for ultrasonic testing (UT) simulations is key for inverse analysis and model-assisted probability of detection (MAPOD) in the field of nondestructive evaluation. In fact, it is impractical to perform the aforementioned tasks in a timely manner using current simulation models directly. Fast surrogate models can make these processes computationally tractable. This paper presents investigations of using surrogate modeling techniques to create fast approximate models of UT simulator responses. In ...


Validation Of Utsim2, A New Ultrasonic Simulation Package, Robert Grandin, Timothy Gray Jun 2017

Validation Of Utsim2, A New Ultrasonic Simulation Package, Robert Grandin, Timothy Gray

Robert Grandin

The Center for NDE (CNDE) at Iowa State University has a long history of developing physics models for NDE and packaging these models into simulation tools which make the modeling capabilities accessible to CNDE’s industrial sponsors. Recent work at CNDE has led to the development of a new ultrasonic simulation package, UTSim2, which aims to continue this tradition of supporting industrial application of CNDE models. In order to meet this goal, UTSim2 has been designed as an extensible software package which can support previously-developed physics models as well as future models yet to be developed. Initial work has focused ...


Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion May 2017

Improving Predictive Capabilities Of Classical Cascade Theory For Nonproliferation Analysis, David Allen Vermillion

Doctoral Dissertations

Uranium enrichment finds a direct and indispensable function in both peaceful and nonpeaceful nuclear applications. Today, over 99% of enriched uranium is produced by gas centrifuge technology. With the international dissemination of the Zippe archetypal design in 1960 followed by the widespread illicit centrifuge trafficking efforts of the A.Q. Khan network, traditional barriers to enrichment technologies are no longer as effective as they once were. Consequently, gas centrifuge technology is now regarded as a high-priority nuclear proliferation threat, and the international nonproliferation community seeks new avenues to effectively and efficiently respond to this emergent threat.

Effective response first requires ...