Open Access. Powered by Scholars. Published by Universities.®

Computational Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computational Engineering

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz Jan 2018

Automated Tree-Level Forest Quantification Using Airborne Lidar, Hamid Hamraz

Theses and Dissertations--Computer Science

Traditional forest management relies on a small field sample and interpretation of aerial photography that not only are costly to execute but also yield inaccurate estimates of the entire forest in question. Airborne light detection and ranging (LiDAR) is a remote sensing technology that records point clouds representing the 3D structure of a forest canopy and the terrain underneath. We present a method for segmenting individual trees from the LiDAR point clouds without making prior assumptions about tree crown shapes and sizes. We then present a method that vertically stratifies the point cloud to an overstory and multiple understory tree ...


Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald Jun 2016

Energy Consumption Prediction With Big Data: Balancing Prediction Accuracy And Computational Resources, Katarina Grolinger, Miriam Am Capretz, Luke Seewald

Electrical and Computer Engineering Publications

In recent years, advances in sensor technologies and expansion of smart meters have resulted in massive growth of energy data sets. These Big Data have created new opportunities for energy prediction, but at the same time, they impose new challenges for traditional technologies. On the other hand, new approaches for handling and processing these Big Data have emerged, such as MapReduce, Spark, Storm, and Oxdata H2O. This paper explores how findings from machine learning with Big Data can benefit energy consumption prediction. An approach based on local learning with support vector regression (SVR) is presented. Although local learning itself is ...